← 返回
耦合计算流体动力学与深度强化学习的点吸收式波浪能转换装置在不规则波浪环境中的锁定控制
Latching control of a point absorber wave energy converter in irregular wave environments coupling computational fluid dynamics and deep reinforcement learning
| 作者 | Hao Qin · Haowen Sua · Zhixuan Wen · Hongjian Liangb |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 396 卷 |
| 技术分类 | 智能化与AI应用 |
| 技术标签 | 多物理场耦合 热仿真 强化学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A DRL latching control coupling model for the heaving point absorber is established. |
语言:
中文摘要
摘要 本文提出了一种新颖的锁定控制模型,该模型耦合计算流体动力学(CFD)与深度强化学习(DRL),以提升点吸收式波浪能转换装置(WEC)的波浪能量捕获性能。首先,构建了一个数值波浪水槽(NWF)以生成不可预测的不规则波浪,并基于CFD模拟WEC与波浪之间的双向耦合作用,从而为DRL输入构建非线性的环境状态空间。同时,设计了一种基于软演员-评论家(Soft Actor-Critic, SAC)算法的训练方法,无需显式参数调节,实现非预测性的锁定控制智能体。其次,利用CFD-DRL耦合模型,在并行的不规则波浪环境中对锁定控制策略进行训练,并评估了三种不同的状态空间配置,以增强智能体的泛化能力。最后,将所提出的锁定控制模型在波浪能量捕获性能方面与传统的实时锁定方法进行对比,并对两种不同的训练方法进行了比较分析。仿真结果表明,在不同波高和频率的不规则波浪测试条件下,所提出的锁定控制模型优于传统实时锁定方法,能够稳定实现超过30%的波浪能量转换效率。本文突出了DRL方法在WEC智能控制应用中的适用性与先进性,可能为波浪能及海洋工程领域提供新的研究思路。
English Abstract
Abstract This paper proposes a novel latching control model coupling Computational fluid dynamics (CFD) and Deep Reinforcement Learning (DRL) to improve the wave energy capture performance of a point absorber wave energy converter (WEC). Firstly, a numerical wave flume (NWF) is built to generate unpredicted irregular waves. That simulates the two-way coupling interaction between the WEC and waves based on CFD, which creates the nonlinear environmental state space for the DRL input. In the meanwhile, a training method based on the Soft Actor-Critic (SAC) algorithm without explicit parameter adjustment is designed to implement a non-predictive latching control agent. Secondly, using the CFD-DRL coupling model, training for the latching control strategy is conducted in parallel irregular wave environments, and three state space configurations are evaluated to enhance the agent's generalization ability. Lastly, the wave energy capture performance using the proposed latching control model is compared with a traditional real-time latching method, and comparative analysis of two different training approaches is carried out. Simulation results show that the proposed latching control model outperforms the traditional real-time latching method in tests under irregular waves with different wave heights and frequencies, stably achieving more than 30 % wave energy conversion efficiency . This paper highlights the applicability and advancement of the DRL method applied in intelligent control of WECs, which may provide new insights for the wave energy and ocean engineering industries.
S
SunView 深度解读
该CFD-DRL耦合控制技术对阳光电源储能系统具有重要借鉴价值。论文中SAC算法实现的非预测性控制策略,可应用于ST系列PCS的能量管理优化,通过深度强化学习应对电网波动的非线性特性,类似波浪能转换器应对不规则波浪。多物理场耦合仿真方法可增强PowerTitan储能系统的热管理与功率控制协同优化。该智能控制框架在30%以上效率提升的验证,为iSolarCloud平台集成AI预测性维护提供了新思路,特别适用于复杂工况下的GFM/VSG控制策略自适应优化。