← 返回
智能化与AI应用 SiC器件 可靠性分析 故障诊断 ★ 5.0

基于微调策略的跨工况船用柴油机故障诊断通用迁移学习框架

A universal transfer learning framework for cross-working-condition marine diesel engine fault diagnosis based on fine-tuning strategy

语言:

中文摘要

摘要 船用柴油机(MDEs)及时且准确的故障诊断(FD)对于提升船舶动力系统的安全性和可靠性至关重要。MDEs在变工况下运行,导致其运行状态和故障数据存在显著差异。这种变异性降低了数据驱动FD模型的适应能力,而这些模型通常是基于单台发动机或特定工况下的数据构建的。为解决上述问题,本研究提出了一种基于深度迁移学习与微调策略的MDEs故障诊断框架。为了增强故障特征提取能力,引入了一种数据层级融合方法用于数据重构。此外,提出了一种新型混合预训练网络,结合CNN + GRU与KAN,以获取源域数据的全面特征。同时,设计了一种组合式微调策略,用于预训练模型的迁移,从而实现更优的跨工况故障知识共享。实验通过两个典型的MDEs故障数据集验证了该框架的有效性。所提出的框架在MDE跨工况(CWC)故障诊断任务中达到了95%的准确率,显著优于非迁移模型。该框架不仅在跨工况故障诊断中表现出色,也为MDEs故障诊断范式提供了新的思路。

English Abstract

Abstract Timely and accurate fault diagnosis (FD) of marine diesel engines (MDEs) is crucial for enhancing the safety and reliability of ship power systems . MDEs operate under variable conditions, leading to significant differences in their operational and fault data. This variability reduces the adaptability of data-driven FD models, which are developed using data from a single engine or specific conditions. To address the aforementioned issues, this study proposes a fault diagnosis framework for MDEs based on deep transfer learning and fine-tuning. To enhance the capability of fault feature extraction, a data-tiered fusion method is introduced for data reconstruction. Furthermore, a novel hybrid pre-training network combined CNN + GRU and KAN is proposed to obtain comprehensive source domain data features. Additionally, a combined fine-tuning strategy for the transfer of pre-trained models is presented to enable superior cross-working-condition fault knowledge sharing. Experiments validate the effectiveness of the framework using two typical MDEs fault datasets. The proposed framework achieves 95 % accuracy in the MDE cross-working-condition (CWC) FD task, which is significantly better than the non-transfer model. The proposed framework not only demonstrates excellent performance in CWC fault diagnosis but also provides new insights for the paradigm of MDEs fault diagnosis.
S

SunView 深度解读

该跨工况迁移学习故障诊断框架对阳光电源储能系统(ST系列PCS、PowerTitan)及光伏逆变器(SG系列)具有重要应用价值。文章提出的CNN+GRU+KAN混合网络和精细调优策略,可应用于不同环境工况下的功率器件(SiC/IGBT)健康监测与故障预测。该方法能有效解决iSolarCloud平台中多站点、多型号设备数据差异导致的诊断模型泛化性不足问题,提升预测性维护准确率。特别适用于储能PCS的三电平拓扑功率模块和充电桩电力电子系统的跨场景故障诊断,可显著降低误报率并缩短停机时间。