← 返回
基于TSSA的微电网逆变器多故障诊断算法
TSSA-Based Multifault Diagnosis Algorithm for Microgrid Inverter
| 作者 | Zhanjun Huang · An Zhang · Weiheng Shao · Kang Hu · Jun Xie |
| 期刊 | IEEE Transactions on Industrial Informatics |
| 出版日期 | 2024年11月 |
| 技术分类 | 智能化与AI应用 |
| 技术标签 | 工商业光伏 微电网 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 微电网逆变器 故障诊断算法 拓扑自相似性评估 数据核拓扑 故障检测定位 |
语言:
中文摘要
在工业应用中,设备的故障诊断常常存在诸多复杂干扰。特别是,传感器导致的检测信号的不确定性和数据丢失,将极大地增加微电网系统逆变器故障诊断的干扰和难度,甚至会导致保护单元误报警和误触发。为解决该问题,本文提出一种基于拓扑自相似性评估的微电网逆变器故障诊断算法。首先,采用数据核拓扑提取方法提取检测信号的核拓扑,该方法能有效反映不同数据状态的关键信息,同时可大幅减少诊断方法的启动量和相应计算量。其次,利用提取的核拓扑重构拓扑虚拟镜像,能有效降低数据丢失的影响。第三,分别利用所获得的核拓扑和拓扑虚拟镜像进行周期性自相似性评估,以提取相应的周期故障程度变量,该方法能有效避免信号偏差和幅值变化的影响,且对逆变器的连续故障特征敏感。此外,利用所获得的周期故障程度变量进行故障检测,得到双重检测结果。最后,通过双重检测结果和定位信息实现相应相的故障检测与定位。详细的实验结果和对比验证了所提算法的有效性。
English Abstract
In industrial applications, the fault diagnosis of equipment often have a lot of complex interferences. Especially, the uncertainty and data loss of detection signals caused by sensors will greatly increase the interference and difficulty for the microgrid system of inverter fault diagnosis, and even result in false alarm and erroneous triggering of protection units. In order to solve the problem, a fault diagnosis algorithm based on topology self-similarity assessment for microgrid inverter is proposed. First, the data nucleus topology extraction method is used to extract nucleus topologies of detection signals, which can effectively reflect the key information of the different data state. Meanwhile, it can greatly reduce the startup amount of diagnosis method and corresponding calculation. Second, the topology virtual mirrors are reconstructed by the extracting nucleus topologies, which can effectively reduce the influence of data loss. Third, the obtained nucleus topologies and topology virtual mirrors are used for periodic self-similarity assessment to extract the corresponding period fault degree variables, respectively, which can effectively avoid the influence of signal bias and amplitude change, and are sensitive to the continuous fault feature of inverter. Further, the obtained period fault degree variables are used for fault detection to obtain dual detection results. Finally, the fault detection and location of corresponding phase are realized by the dual detection results and location information. The effectiveness of the proposed algorithm is validated by the detailed experiment results and comparison.
S
SunView 深度解读
从阳光电源微电网逆变器及储能系统业务角度来看,这项基于拓扑自相似性评估(TSSA)的多故障诊断算法具有显著的工程应用价值。
该技术针对工业现场传感器信号不确定性和数据丢失等实际问题,提出了创新性解决方案。通过数据核心拓扑提取方法,算法能够在大幅降低计算量的同时保留关键故障特征信息,这对于阳光电源大规模光伏电站和储能电站的实时监控系统具有重要意义。特别是拓扑虚拟镜像重构技术,可有效应对复杂电磁环境下的数据丢失问题,显著降低误报率和保护装置误动作风险,这直接关系到电站运维效率和设备安全性。
该算法的周期自相似性评估机制对信号偏置和幅值变化不敏感,但对逆变器连续性故障特征高度敏感,这一特性契合阳光电源逆变器产品在恶劣环境下长期运行的实际需求。双重检测结果机制进一步提升了故障定位的准确性,有助于实现精准运维,减少停机时间。
从技术成熟度评估,该算法已通过详细实验验证,但从学术研究到工业化应用仍需关注几个关键问题:一是算法在阳光电源多样化产品线(从户用到集中式逆变器)上的适配性;二是与现有SCADA系统和智能运维平台的集成难度;三是在极端工况下的鲁棒性验证。
建议阳光电源将此技术纳入下一代逆变器智能诊断系统的研发路线图,优先在储能变流器等高可靠性要求场景进行试点应用,同时结合公司在人工智能运维方面的积累,形成差异化竞争优势。