← 返回
光伏发电技术 强化学习 ★ 5.0

解锁建筑一体化光伏与电池

BIPVB)系统深度强化学习中的预测洞察力与可解释性

作者 Yuan Gao · Zehuan Hu · Shun Yamat · Junichiro Otomo · Wei-An Chen · Mingzhe Liu · Tingting Xug · Yingjun Ruan · Juan Shang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 384 卷
技术分类 光伏发电技术
技术标签 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Separates dynamic and static features for tailored DRL processing in BIPVB control.
语言:

中文摘要

摘要 可再生能源的部署以及智能能源管理策略的实施对于建筑能源系统(BES)的脱碳至关重要。尽管数据驱动的深度强化学习(DRL)在优化BES方面已取得近期进展,但仍存在显著挑战,例如缺乏针对时间序列数据观测空间的研究以及模型可解释性的不足。本文首次将未来预测信息引入DRL算法中,以构建时间序列数据的观测空间,并采用门控循环单元(GRU)和Transformer网络与DRL算法相结合,用于建筑一体化光伏与电池(BIPVB)系统的运行控制。此外,通过将前沿的Shapley加性解释(SHAP)技术与所开发的DRL模型相集成,旨在增强模型在全局和局部特征重要性方面的可解释性。所有结果均在一个开源的真实BIPVB系统上进行了验证和测试,结果表明,引入预测信息可使运行成本降低3.56%,而使用GRU和Transformer网络处理时间序列数据可进一步将成本降低超过10%。SHAP值分析结果揭示了预测信息中未来电价在优化过程中的重要性,展现了模型内部复杂的非线性关系。此外,本研究基于SHAP方法为单个运行周期实例提供了可解释性分析。总体而言,本研究提出了一种准确、可靠且透明的深度强化学习模型,并提供了一个富有洞察力的框架,用于处理DRL中的时间序列观测问题。

English Abstract

Abstract The deployment of renewable energy and the implementation of intelligent energy management strategies are crucial for decarbonizing Building Energy Systems (BES). Although data-driven Deep Reinforcement Learning (DRL) has achieved recent advancements in optimizing BES, significant challenges remain, such as the lack of studies addressing the observation space of time series data and the scarcity of interpretability. This paper first introduces future forecast information into the DRL algorithm to form the observation space for time series data. It employs Gated Recurrent Unit(GRU) and Transformer networks coupled with the DRL algorithm for operational control of a Building-Integrated Photovoltaic and Battery(BIPVB) system. Additionally, it aims to enhance the interpretability of the model regarding global and local feature importance by integrating the state-of-the-art Shapley Additive Explanations (SHAP) technique with the developed DRL model. All results were validated and tested on an open-source, real-world BIPVB system, showing that incorporating forecast information can reduce operational costs by 3.56%, while using GRU and Transformer networks to handle time-series data can further reduce costs by over 10%. The results of the SHAP value analysis demonstrated the importance of future electricity prices in forecast information for optimization, revealing the model’s complex nonlinear relationships. Additionally, this study provided interpretability for a single episode instance based on the SHAP method. Overall, the study offers an accurate, reliable, and transparent deep reinforcement learning model, along with an insightful framework for handling time-series observations in DRL.
S

SunView 深度解读

该深度强化学习优化技术对阳光电源光储一体化系统具有重要应用价值。研究中的GRU/Transformer时序预测与DRL决策框架可直接应用于ST系列储能变流器的智能调度策略,结合电价预测信息实现成本降低10%以上。SHAP可解释性分析方法可增强iSolarCloud平台的AI决策透明度,为PowerTitan储能系统提供可信赖的能量管理优化。该框架与阳光电源GFM控制技术结合,可提升建筑光储系统的经济性与智能化水平,支撑双碳目标下的分布式能源精细化运营。