← 返回
基于鲁棒深度强化学习的考虑输电网电压波动的多馈线配电网分布式电压控制
Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning
| 作者 | Zhi Wu · Yiqi Li · Xiao Zhang · Shu Zheng · Jingtao Zhao |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 379 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A multi-agent distributed voltage control strategy is proposed for multi-feeder distribution network. |
语言:
中文摘要
摘要 在多馈线配电网中,区域间光伏出力与负荷需求的功率平衡问题更加复杂。为解决上述问题,本文提出一种基于鲁棒深度强化学习的多智能体分布式电压控制策略,以降低电压偏差。将整个多馈线配电网划分为主智能体和多个子智能体,建立了一种考虑输电网电压波动及其对应功率波动的多智能体分布式电压控制模型。主智能体基于子智能体上传的信息,将输电网电压波动及相应功率波动的不确定性建模为对系统状态的扰动,并采用鲁棒深度强化学习方法确定有载调压变压器分接头的位置。进一步地,各子智能体利用二阶锥松弛技术调节每条馈线上逆变器的无功功率输出。所提方法在两个真实世界的多馈线系统中得到了验证。结果表明,该方法可实现毫秒级决策,电压偏差仅比全局最优结果高1.28%,实现了近似最优控制。此外,该方法在应对输电网不确定性以及部分量测数据丢失方面也表现出良好的鲁棒性。
English Abstract
Abstract In the multi-feeder distribution network , the power balance between photovoltaics generations and load demands across regions is more complex. To solve the above problems, this paper proposes a multi-agent distributed voltage control strategy based on robust deep reinforcement learning to reduce voltage deviation. The whole multi-feeder distribution network is divided into a main agent and several sub-agents, and a multi-agent distributed voltage control model considering the transmission network voltage fluctuations and the corresponding power fluctuations is established. Based on the information uploaded by sub-agents, the main agent models the uncertainty of the transmission network voltage fluctuations and the corresponding power fluctuations as a disturbance to the state, and a RDRL method is employed to determine the tap position of on-load tap changer. Furtherly, each sub-agent uses the second-order cone relaxation technique to adjust the reactive power outputs of the inverters on each feeder. The effectiveness of the proposed method has been verified in two real-world multi-feeder systems. The results show that the proposed method can achieve millisecond-level decision-making, with a voltage deviation only 1.28 % higher than the global optimal results, achieving near-optimal control. The proposed method also demonstrates robustness in handling transmission network uncertainties and partial measurement loss.
S
SunView 深度解读
该多馈线分布式电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。论文提出的主从代理架构可应用于iSolarCloud平台,实现毫秒级电压调节决策。鲁棒深度强化学习方法可增强PowerTitan储能系统应对电网电压波动的能力,二阶锥松弛技术优化逆变器无功输出与阳光电源现有MPPT控制形成互补。该方法在多馈线场景下电压偏差仅比全局最优高1.28%,可为阳光电源多机并联场景的协调控制和GFM/GFL混合组网提供算法创新思路,提升系统鲁棒性和电能质量管理水平。