← 返回
基于深度强化学习并考虑电驱动系统热特性的混合动力汽车能量管理策略
Energy management strategy for hybrid electric vehicles based on deep reinforcement learning with consideration of electric drive system thermal characteristics
| 作者 | Juhuan Qin · Haozhong Huang · Hualin Lu · Zhaojun Li |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 332 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 强化学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | An optimized [energy management](https://www.sciencedirect.com/topics/engineering/energy-management "Learn more about energy management from ScienceDirect's AI-generated Topic Pages") strategy based on deep deterministic policy gradient is proposed. |
语言:
中文摘要
摘要 深度强化学习已成为实现混合动力汽车在线优化能量管理的有力候选方法。然而,以往的研究尚未考虑混合电驱动系统中关键部件整体热特性对系统性能的影响。本文针对插电式混合动力汽车,提出一种基于深度确定性策略梯度算法并考虑电驱动系统热特性的能量管理策略,旨在将电池和电机的温度控制在安全范围内,同时提升车辆的整体性能。首先,构建了电池与电机的温度模型,并将其引入能量管理策略框架中;其次,采用基于深度确定性策略梯度的智能算法调节权重系数,以实现多目标之间的协调优化。基于多种典型循环工况开展了仿真实验,结果表明,所提出的策略通过动态调节电池和电机的工作状态,使动力系统始终运行在最佳工作温度区间内。与原始策略相比,最终电池温度降低了2.557 °C,电机温度降低了1.806 °C,燃油消耗减少了约8.46%。此外,能耗水平可达到动态规划结果的95.82%。这些结果不仅验证了所提策略在能量优化方面的有效性,而且在不同边界条件的压力测试中保持稳定输出,充分展示了其鲁棒性。
English Abstract
Abstract Deep reinforcement learning has emerged as a promising candidate for online optimised energy management in hybrid vehicles. However, previous studies have not considered the impact of the overall thermal characteristics of key components in a hybrid electric system on the system performance. In this paper, an energy management strategy based on deep deterministic policy gradient algorithm considering the thermal characteristics of the electric drive system is proposed for plug-in hybrid electric vehicles, aiming at controlling the battery and motor temperatures within a safe range and improving the vehicle’s overall performance of the vehicle. Firstly, the temperature models of battery and motor are constructed and introduced into the energy management strategy framework. Secondly, the weight coefficients are adjusted using an intelligent algorithm based on deep deterministic policy gradient to achieve the trade-off between multiple objectives. Simulation experiments are carried out based on a variety of typical cycling conditions, and the results show that the proposed strategy maintains the powertrain in the optimal operating temperature range by dynamically adjusting the operating states of the battery and motor. Compared with the original strategy, the final battery temperature is reduced by 2.557 °C, the motor temperature is reduced by 1.806 °C, and the fuel consumption is reduced by about 8.46 %. Moreover, the energy consumption can reach 95.82 % of the dynamic planning. These results not only verify the effectiveness of the proposed strategy in energy optimization, but also fully demonstrates its robustness by maintaining a stable output in stress tests with different boundary conditions.
S
SunView 深度解读
该深度强化学习热管理策略对阳光电源电动汽车驱动系统及储能产品具有重要价值。在电机驱动器方面,可借鉴其温度预测模型优化功率器件(SiC/IGBT)热管理,降低损耗并延长寿命;在储能PCS(ST系列)中,可应用DDPG算法实现电池热状态动态调控,提升PowerTitan等系统循环寿命;在充电桩OBC产品中,该多目标优化框架可平衡充电效率与温升控制。特别是其鲁棒性验证方法,可用于iSolarCloud平台的预测性维护算法开发,实现设备全生命周期热管理优化。