← 返回
储能系统技术 储能系统 电池管理系统BMS DAB 强化学习 ★ 5.0

基于强化学习的结构健康监测物联网传感器网络自适应电池管理

Reinforcement learning for adaptive battery management of structural health monitoring IoT sensor network

作者 Tahsin Afroz Hoque Nishat · Jong-Hyun Jeong · Hongki Jo · Shenghao Xi · Jian Liu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 390 卷
技术分类 储能系统技术
技术标签 储能系统 电池管理系统BMS DAB 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A DRL-based battery health management in WSN is proposed to implement adaptive sleep-awake scheduling.
语言:

中文摘要

摘要 由电池供电的无线传感器网络(WSN)为结构健康监测(SHM)提供了一种经济且易于部署的解决方案。然而,由于传感器网络中电池损耗不均、更换电池时面临后勤规划困难,以及维持SHM所需的服务质量(QoS)等问题,其长期运行的可行性面临挑战。系统层面的电池健康管理策略对于延长WSN的寿命和可靠性至关重要,尤其是在考虑到更换电池所需的昂贵维护行程的情况下。本研究提出了一种基于强化学习(RL)的框架,旨在在保持SHM服务质量的同时,主动在系统层面上管理电池老化问题。该框架聚焦于成组电池更换,以减轻后勤负担,并在不牺牲预期QoS的前提下提升WSN的使用寿命。为了验证该RL框架的有效性,本文构建了一个针对斜拉桥SHM实际WSN布置的详细仿真环境。该仿真综合考虑了多种环境与运行因素,包括天气引起的太阳能采集波动、通信不确定性、锂离子电池老化模型、传感器功耗以及占空比策略等。此外,还引入了一种基于模态形状的质量指标用于评估SHM网络的性能。RL智能体在该仿真环境中进行训练,以学习针对特定占空比的最优节点选择策略。结果表明,该框架能够有效优化电池更换工作,使电池退化更加均匀,各电池寿命终点趋于一致,从而在存在不确定性的条件下实现WSN更持久且更可靠的运行。

English Abstract

Abstract Battery-powered wireless sensor networks (WSNs) provide an affordable and easily deployable option for Structural Health Monitoring (SHM). However, their long-term viability becomes challenging due to uneven battery wear across the sensor network, logistical planning difficulties for battery replacement, and maintaining the desired Quality of Service (QoS) for SHM. A system-level battery health management strategy is vital to extend the lifespan and reliability of WSNs, especially considering the expensive maintenance trips required for battery replacement. This study presents a reinforcement learning (RL) based framework to actively manage battery degradation at the system level while preserving SHM QoS. The framework focuses on group battery replacement, reducing logistical burdens, and enhancing WSN longevity without compromising desired QoS. To validate the RL framework, a detailed simulation environment was created for a real-world WSN setup on a cable-stayed bridge SHM. The simulation accounted for various environmental and operational factors such as weather-induced solar harvesting variability, communication uncertainties, lithium-ion battery degradation models , sensor power consumption , and duty cycle strategies etc. Additionally, a mode shape-based quality index was introduced for a SHM network. The RL agent was trained within this environment to learn optimal node selection for specific duty cycles. The results demonstrate the framework's effectiveness in optimizing battery replacement efforts by ensuring a similar end of lifetimes with more uniform battery degradation and allowing the longer and more reliable operation of WSNs under uncertainties.
S

SunView 深度解读

该强化学习电池管理技术对阳光电源储能系统具有重要应用价值。文中针对无线传感网络的系统级电池健康管理策略,可直接应用于ST系列PCS和PowerTitan储能系统的BMS优化。通过RL算法实现电池组均衡老化、延长系统寿命的思路,与阳光电源大规模储能电站面临的电池一致性管理挑战高度契合。特别是其考虑光伏波动、通信不确定性的仿真环境,可为iSolarCloud平台的预测性维护功能提供算法支撑,降低储能电站运维成本,提升系统可靠性和经济性。