← 返回
储能系统技术 储能系统 DAB 强化学习 ★ 5.0

三相双有源桥变换器效率优化的无模型深度强化学习框架

A Model-Free Deep Reinforcement Learning Framework for Efficiency Optimization of Three-Phase Dual Active Bridge Converters

作者 Zhihao Chen · Zhen Li · Sijia Huang · Haoyu Chen · Zhenbin Zhang
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年9月
技术分类 储能系统技术
技术标签 储能系统 DAB 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 三相双有源桥变换器 效率提升 无模型优化框架 深度强化学习 参数灵敏度分析
语言:

中文摘要

针对三相双有源桥(3p-DAB)变换器效率优化面临的挑战,现有数学推导和人工智能方法依赖复杂耗时的解析或数据驱动建模增加开发复杂度。提出基于深度强化学习的无模型优化框架,通过系统交互直接学习策略而无需电气参数显式建模,显著减少开发时间并确保优化性能。参数敏感性分析验证不同变换器条件下的强泛化性。开发深度确定性策略梯度算法退化变体用于3p-DAB单步决策优化,配合AI驱动占空比控制策略提升效率。与先进数学分析和数据驱动方法的综合对比验证了所提方法的有效性。

English Abstract

The three-phase dual active bridge converter is widely used in high-power applications due to its high power density, bidirectional power flow, and soft-switching capability. However, improving efficiency remains a major challenge. Existing strategies including mathematically-derived methods and artificial intelligence approaches still rely on complex and time-consuming analytical modeling or data-driven modeling, consequently increasing development complexity. To address these issues, this work proposes a model-free optimization framework based on deep reinforcement learning, enabling direct policy learning through system interaction without explicit modeling of electrical parameters, significantly reducing development time while ensuring optimization performance. To verify the generalization, a parameter sensitivity analysis is conducted, confirming strong generalization under different conditions of the converter. Furthermore, a degenerate variant of the deep deterministic policy gradient algorithm is developed for single-step decision optimization in 3p-DAB converters, along with an AI-driven duty-cycle control strategy for efficiency enhancement. Finally, comprehensive comparisons with state-of-the-art mathematical analytical method and data-driven approache validate the effectiveness of the proposed approach.
S

SunView 深度解读

该深度强化学习DAB优化技术对阳光电源智能变换器开发有重要创新价值。无模型优化框架可应用于ST储能变流器的DAB模块效率优化,减少建模工作量并加快产品开发周期。深度确定性策略梯度算法对PowerTitan大型储能系统的多模块协调控制有借鉴意义,可实现自适应效率优化。该技术对阳光电源AI驱动的iSolarCloud云平台智能优化功能开发有启发,可提升系统整体效率和经济性。