← 返回
集成多层感知器和支持向量回归增强锂离子电池健康状态估计
Integrating Multilayer Perceptron and Support Vector Regression for Enhanced State of Health Estimation in Lithium-Ion Batteries
| 作者 | Sadiqa Jafari · Jisoo Kim · Wonil Choi · Yung-Cheol Byun |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 电池管理系统BMS DAB 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电池健康状态 机器学习算法 数据准备 集成学习 预测 |
语言:
中文摘要
准确评估电池健康状态SOH对保证电动汽车EV安全可靠运行至关重要。本文提出新策略解决传统SOH测量方法中复杂预处理和大量数据需求的困难。利用先进机器学习算法提出全面SOH预测方法。方法包括细致数据准备,分析电压、电流和温度等关键运行因素。利用超参数优化微调的支持向量回归SVR和多层感知器MLP模型。使用均方根误差RMSE、均方误差MSE和R平方评估模型。为提高预测准确性,使用随机森林RF元模型将这些模型组合成堆叠集成,R²达0.987,MAE为0.02559,MSE为0.0013,RMSE为0.00624。结果表明集成优于单个模型预测SOH,突显集成学习在预测性维护和电池管理中的能力。
English Abstract
Accurately evaluating the State of Health (SOH) of batteries is crucial for guaranteeing the secure and dependable functioning of Electric Vehicles (EVs). This paper presents a novel strategy for tackling the difficulties associated with intricate preprocessing and the demand for extensive data in conventional approaches to SOH measurement. Using sophisticated machine learning algorithms, we suggest an all-encompassing methodology for predicting the SOH. Our approach includes meticulous data preparation, which includes analyzing crucial operating elements such as voltage, current, and temperature. We utilized Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models, which were fine-tuned using hyperparameter optimization. The models were assessed using evaluation metrics such as Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared R^2 . In order to improve the accuracy of our predictions, we combined these models into a stacked ensemble using a Random Forest (RF) meta-model. This resulted in an R^2 value of 0.987, MAE of 0.02559, MSE of 0.0013, and RMSE of 0.00624. The results indicate that the ensemble outperforms individual models in predicting SOH. This research highlights the capacity of ensemble learning in predictive maintenance and battery management.
S
SunView 深度解读
该SOH估计技术对阳光电源电池管理系统BMS产品线有重要应用价值。阳光车载OBC和储能BMS需要高精度SOH估计来优化电池使用和延长寿命。SVR和MLP集成模型可集成到阳光BMS算法中,提高SOH估计准确性。超参数优化方法对阳光机器学习算法开发有借鉴意义。该研究验证的高R²值和低误差率,证明集成学习在电池管理中的有效性,可支撑阳光开发更智能的BMS产品和预测性维护功能。