找到 1 条结果
集成多层感知器和支持向量回归增强锂离子电池健康状态估计
Integrating Multilayer Perceptron and Support Vector Regression for Enhanced State of Health Estimation in Lithium-Ion Batteries
Sadiqa Jafari · Jisoo Kim · Wonil Choi · Yung-Cheol Byun · IEEE Access · 2025年1月
准确评估电池健康状态SOH对保证电动汽车EV安全可靠运行至关重要。本文提出新策略解决传统SOH测量方法中复杂预处理和大量数据需求的困难。利用先进机器学习算法提出全面SOH预测方法。方法包括细致数据准备,分析电压、电流和温度等关键运行因素。利用超参数优化微调的支持向量回归SVR和多层感知器MLP模型。使用均方根误差RMSE、均方误差MSE和R平方评估模型。为提高预测准确性,使用随机森林RF元模型将这些模型组合成堆叠集成,R²达0.987,MAE为0.02559,MSE为0.0013,RMSE为0....
解读: 该SOH估计技术对阳光电源电池管理系统BMS产品线有重要应用价值。阳光车载OBC和储能BMS需要高精度SOH估计来优化电池使用和延长寿命。SVR和MLP集成模型可集成到阳光BMS算法中,提高SOH估计准确性。超参数优化方法对阳光机器学习算法开发有借鉴意义。该研究验证的高R²值和低误差率,证明集成学习...