← 返回
电动汽车电池SOC和SOH估计的数据驱动方法综述
Data-Driven Approaches for Estimation of EV Battery SoC and SoH: A Review
| 作者 | Shahid Gulzar Padder · Jayesh Ambulkar · Atul Banotra · Sudhakar Modem · Sidharth Maheshwari · Kolleboyina Jayaramulu |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 电池管理系统BMS 可靠性分析 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电动汽车 荷电状态 健康状态 机器学习算法 电池寿命 |
语言:
中文摘要
电动汽车EV技术已在交通行业奠定坚实基础。荷电状态SoC和健康状态SoH的精确评估对解决EV中的续航焦虑和意外故障问题至关重要。本文检查各种方法,包括库仑计数CC和开路电压OCV等传统方法、先进滤波器方法和现代数据驱动方法。讨论不同方法的广泛评估以及优缺点识别。使用机器学习算法的数据驱动估计在复杂电池管理系统中展现卓越准确性和适应性。电压、电流、时间和温度VCTT等外部电池参数以及阻抗和超声波数据等内部电池参数是数据驱动方法的主要组成部分。本研究中机器学习算法在预测和维持电动汽车电池寿命方面展现显著增强。然而电池系统仍需持续进步以维持环保交通并整合开创性估计技术以提高电池可靠性和寿命。
English Abstract
Electric vehicle (EV) technologies have marked a staunch foundation in the transportation industry. The precise assessment of State of Charge (SoC) as well as State of Health (SoH) is essential for problems like range anxiety and unanticipated breakdown in EVs. In that regard, we have examined various methodologies, including traditional methods like Coulomb Counting (CC) and Open Circuit Voltage (OCV), advanced filter-based approaches, and contemporary data-driven methods. An extensive evaluation of different methods, along with the identification of strengths and weaknesses, is discussed. Data-driven estimation using Machine learning algorithms demonstrates superior accuracy and adaptability in sophisticated battery management systems. External battery parameters such as voltage, current, time, and temperature (V.C.T.T) and internal battery parameters such as impedance and ultrasonic data are the principal constituents of the Data-driven approaches. In this study, machine learning algorithms exhibited substantial enhancements in predicting and maintaining the lifespan of electric vehicle batteries. Nevertheless, there remains a requirement for ongoing advancement in battery systems to up-hold environmentally friendly transportation and incorporate pioneering estimation techniques to improve the reliability and lifespan of batteries.
S
SunView 深度解读
该SOC和SOH估计综述对阳光电源BMS技术路线规划有全面参考价值。阳光车载OBC和储能BMS需要准确的SOC/SOH估计算法。数据驱动方法相比传统方法的优势支持阳光引入机器学习技术。VCTT外部参数和阻抗内部参数的综合应用与阳光多传感器融合策略一致。该综述强调持续进步和开创性技术的必要性,可指导阳光持续优化BMS算法和传感技术。结合阳光海量电池运行数据,可开发更准确通用的SOC/SOH估计模型,提升电池管理智能化水平和产品竞争力。