找到 8 条结果

排序:
储能系统技术 模型预测控制MPC 可靠性分析 ★ 5.0

基于转置Transformer模型的电化学储能自适应SOH估计方法

An Adaptive SOH Estimation Method for Electrochemical Energy Storage Based on Transposed Transformer Model

李鹏 · 葛儒哲 · 董存 · 孙树敏 等6人 · 高电压技术 · 2025年6月 · Vol.51

为保障锂离子电池运行的可靠性与安全性,及时监测其健康状态,本文在Autoformer与iTransformer模型基础上,融合线性回归模型,提出一种基于转置Transformer的自适应特征感知电池健康状态融合估计模型。通过提取充电曲线健康因子,将容量退化分解为趋势项与再生项,分别由线性回归和转置Transformer模型进行预测与估计,结合二者输出获得最终容量退化趋势。利用注意力权重增强模型可解释性。实验结果表明,该方法在NASA数据集上预测误差显著低于其他时序模型,验证了其精度与可靠性,为电...

解读: 该转置Transformer自适应SOH估计技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。通过将容量退化分解为趋势项与再生项的混合建模方法,可显著提升iSolarCloud云平台的电池健康状态监测精度,实现更准确的预测性维护。该方法基于充电曲线健康因子提取,可无...

储能系统技术 储能系统 电池管理系统BMS 可靠性分析 ★ 5.0

电动汽车电池SOC和SOH估计的数据驱动方法综述

Data-Driven Approaches for Estimation of EV Battery SoC and SoH: A Review

Shahid Gulzar Padder · Jayesh Ambulkar · Atul Banotra · Sudhakar Modem 等6人 · IEEE Access · 2025年1月

电动汽车EV技术已在交通行业奠定坚实基础。荷电状态SoC和健康状态SoH的精确评估对解决EV中的续航焦虑和意外故障问题至关重要。本文检查各种方法,包括库仑计数CC和开路电压OCV等传统方法、先进滤波器方法和现代数据驱动方法。讨论不同方法的广泛评估以及优缺点识别。使用机器学习算法的数据驱动估计在复杂电池管理系统中展现卓越准确性和适应性。电压、电流、时间和温度VCTT等外部电池参数以及阻抗和超声波数据等内部电池参数是数据驱动方法的主要组成部分。本研究中机器学习算法在预测和维持电动汽车电池寿命方面展现...

解读: 该SOC和SOH估计综述对阳光电源BMS技术路线规划有全面参考价值。阳光车载OBC和储能BMS需要准确的SOC/SOH估计算法。数据驱动方法相比传统方法的优势支持阳光引入机器学习技术。VCTT外部参数和阻抗内部参数的综合应用与阳光多传感器融合策略一致。该综述强调持续进步和开创性技术的必要性,可指导阳...

储能系统技术 储能系统 ★ 5.0

一种考虑单体电池运行状态的锂离子电池健康状态贝叶斯迁移学习评估框架

A Bayesian transfer learning framework for assessing health status of Lithium-ion batteries considering individual battery operating states

Jiarui Zhang · Lei Mao · Zhongyong Liu · Kun Yu 等5人 · Applied Energy · 2025年1月 · Vol.382

摘要 锂离子电池(LIBs)健康状态(SOH)的快速准确评估对于实现高效的电池监测与管理具有重要意义。LIBs的退化是一个复杂的过程,每一块电池的退化路径均具有独特性,受到内部和外部多种因素共同影响。然而,现有方法通常将每块电池视为独立个体处理,未能充分挖掘和利用各单体电池的独特特征。为克服这一局限性,本研究提出了一种贝叶斯迁移学习框架,用于建模锂离子电池特有的退化过程,从而完成对SOH的评估。具体而言,构建了一个混合效应模型(MEM)以描述电池健康状态的退化过程,该模型能够捕捉不同电池之间的异...

解读: 该贝叶斯迁移学习框架对阳光电源ST系列储能变流器及PowerTitan储能系统的电池管理具有重要价值。混合效应模型可捕捉单体电池差异性,实现精准SOH评估,优化BMS策略。三种参数更新策略适配不同应用场景,可提升iSolarCloud平台预测性维护能力。该方法兼容循环老化与日历老化,适用于大规模储能...

储能系统技术 电池管理系统BMS 深度学习 ★ 5.0

基于温度相关扩展卡尔曼滤波与深度学习的锂离子电池荷电状态与健康状态联合估计方法

A State-of-Charge and State-of-Health Joint Estimation Method of Lithium-Ion Battery Based on Temperature-Dependent Extended Kalman Filter and Deep Learning

Shiquan Wang · Kai Ou · Wei Zhang · Ya-Xiong Wang · IEEE Transactions on Industrial Electronics · 2024年7月

准确估算荷电状态(SOC)和健康状态(SOH)对于改进电池管理技术至关重要。然而,电池会受到温度和老化的影响,导致其呈现出更难以表征的非线性关系。本文提出了一种基于温度相关扩展卡尔曼滤波器(EKF)和深度学习的锂离子电池SOC - SOH联合估算方法。首先,创建包含温度和容量变量的电池模型状态矩阵、控制矩阵和观测矩阵,以便在本地端使用EKF进行实时SOC估算。其次,利用卷积神经网络(CNN)和注意力机制提取并加权电池老化特征,并结合门控单元解决长序列记忆问题,从而在远程计算平台上进行SOH估算。...

解读: 从阳光电源储能系统业务视角看,这项基于温度依赖扩展卡尔曼滤波与深度学习的SOC-SOH联合估算技术具有显著的工程应用价值。该技术直击储能系统电池管理的核心痛点——在复杂温度环境和电池老化条件下实现精准状态估计,这对我司大规模储能电站和户用储能产品的安全性、经济性至关重要。 技术架构上,论文提出的"...

储能系统技术 SiC器件 可靠性分析 深度学习 ★ 5.0

基于物理信息神经网络的锂离子电池健康状态、剩余使用寿命与短期退化路径联合估计

Physics-informed neural network for co-estimation of state of health, remaining useful life, and short-term degradation path in Lithium-ion batteries

Li Yanga · Mingjian Heab · Yatao Ren · Baohai Gao 等5人 · Applied Energy · 2025年1月 · Vol.398

摘要 锂离子电池由于各种内部和外部因素会随时间逐渐退化,这种退化带来了显著的安全性和可靠性风险,凸显了电池健康管理作为关键研究领域的重要性。然而,当前仍面临一个重大挑战,即开发一种通用的健康管理方法,以适应不同的电池材料、工作环境以及多样化的任务需求。为应对这一问题,本文提出了一种新颖的多任务健康管理方法,该方法将多任务处理框架与物理信息神经网络相结合。通过共享参数与任务特定参数的协同设计,并结合基于物理规律的特征提取机制,该方法高效地整合了健康状态估计、剩余使用寿命预测以及短期退化路径预测三项...

解读: 该物理信息神经网络多任务学习框架对阳光电源储能系统具有重要应用价值。可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,实现SOH估算(误差0.75%)、RUL预测(误差104循环)和短期退化路径预测的协同管理。其基于恒压充电阶段电压电流数据的特征提取方法,与阳光电源iSolarCl...

储能系统技术 电池管理系统BMS SiC器件 ★ 5.0

AM-MFF:一种基于注意力机制的多特征融合框架用于鲁棒且可解释的锂离子电池健康状态估计

AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation

Si-Zhe Chen · Jing Liu · Haoliang Yuan · Yibin Tao 等6人 · Applied Energy · 2025年1月 · Vol.381

健康状态(SOH)是电池管理系统(BMS)中的一个关键参数。利用多种数据源可有效提升端到端SOH估计的性能。然而,现有的基于多维特征的方法未能充分挖掘不同数据源之间的内在关联。同时,大多数方法缺乏可解释性,并忽视了噪声带来的不利影响。本研究提出了一种基于注意力机制的多特征融合框架(AM-MFF),以实现鲁棒且可解释的SOH估计。AM-MFF结合了卷积神经网络(CNN)和注意力机制(AM)的优势,能够高效提取并融合健康特征,从而全面感知电池老化信息。该框架将两个运行阶段的数据作为输入,并通过两个独...

解读: 该AM-MFF锂电池SOH估算框架对阳光电源储能系统具有重要应用价值。其多特征融合与注意力机制可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,提升电池健康状态预测精度和抗噪性能。多输入容错设计确保单传感器故障时系统仍可靠运行,符合大规模储能安全需求。注意力分数的可解释性有助于iS...

储能系统技术 电池管理系统BMS ★ 5.0

一种基于多时间分辨率注意力机制的交互网络用于多种电池状态联合估计

A multi-time-resolution attention-based interaction network for co-estimation of multiple battery states

Ruixue Liu · Benben Jiang · Applied Energy · 2025年1月 · Vol.381

摘要 高效且可靠的电池管理系统依赖于对多个电池状态的精确联合估计,包括荷电状态(SOC)、健康状态(SOH)和剩余使用寿命(RUL)。然而,由于这些状态在不同时间尺度上具有不同的时间分辨率以及复杂的相互作用,特别是在缺乏历史电池数据的情况下,该任务面临显著挑战。为应对这些挑战,本文提出了一种新颖的端到端多时间分辨率注意力机制交互网络(MuRAIN),用于多种电池状态的联合估计,该方法直接利用当前的充放电循环数据,无需历史数据。MuRAIN方法引入了一个多分辨率分块模块,能够从循环数据中智能提取具...

解读: 该多时间分辨率注意力交互网络技术对阳光电源ST系列储能变流器及PowerTitan储能系统的BMS优化具有重要价值。MuRAIN可实现SOC、SOH、RUL的高精度联合估计,无需历史数据即可基于当前循环数据运行,特别适合浅循环工况下的商业储能应用。该技术可集成至iSolarCloud平台,提升预测性...

储能系统技术 储能系统 电池管理系统BMS 深度学习 ★ 5.0

基于TCN-LSTM神经网络与迁移学习的数字孪生支持型电池状态估计

Digital Twin-supported Battery State Estimation Based on TCN-LSTM Neural Networks and Transfer Learning

Kai ZhaoYing LiuYue ZhouWenlong MingJianzhong Wu · 中国电机工程学会热电联产 · 2025年1月 · Vol.45

准确估计电池荷电状态(SOC)、健康状态(SOH)及剩余使用寿命(RUL)对储能技术发展至关重要。本文提出一种融合时间卷积网络(TCN)与长短期记忆网络(LSTM)的数字孪生(DT)支持型电池状态估计算法。构建四层层次化DT架构以克服传统电池管理系统在计算与存储上的局限,并引入基于迁移学习的在线TCN-LSTM模型,实现神经网络参数的动态更新与实时精度优化。实验结果表明,该方法在90个循环数据下SOC、SOH和RUL的平均均方根误差分别为1.1%、0.8%和0.9%,显著优于传统CNN等模型,展...

解读: 该数字孪生支持的电池状态估计技术对阳光电源ST系列储能系统和PowerTitan大型储能方案具有重要应用价值。TCN-LSTM融合架构可直接集成至BMS系统,实现SOC/SOH/RUL的高精度实时估计(RMSE<1.1%),显著提升电池全生命周期管理能力。四层DT架构突破边缘侧计算瓶颈,可与iSol...