← 返回
一种基于多时间分辨率注意力机制的交互网络用于多种电池状态联合估计
A multi-time-resolution attention-based interaction network for co-estimation of multiple battery states
| 作者 | Ruixue Liu · Benben Jiang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 电池管理系统BMS |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A data-driven approach is proposed to co-estimate multiple battery states. |
语言:
中文摘要
摘要 高效且可靠的电池管理系统依赖于对多个电池状态的精确联合估计,包括荷电状态(SOC)、健康状态(SOH)和剩余使用寿命(RUL)。然而,由于这些状态在不同时间尺度上具有不同的时间分辨率以及复杂的相互作用,特别是在缺乏历史电池数据的情况下,该任务面临显著挑战。为应对这些挑战,本文提出了一种新颖的端到端多时间分辨率注意力机制交互网络(MuRAIN),用于多种电池状态的联合估计,该方法直接利用当前的充放电循环数据,无需历史数据。MuRAIN方法引入了一个多分辨率分块模块,能够从循环数据中智能提取具有不同时间尺度的特征。随后设计了一个交互式学习模块,用于建模不同时间尺度特征之间的复杂交互关系,并并行地相应更新特征序列。最后,结合多头自注意力机制的编码器模块与状态估计器共同作用,基于交互学习模块输出的更新后特征序列来估计电池的多个状态。为验证所提方法的有效性,我们采用了三个基准数据集进行实验,这些数据集包含采用不同循环协议的全循环电池单元以及具有不同循环深度的浅循环电池单元。结果表明:(i)对于全循环电池单元,MuRAIN在估计SOC、SOH和RUL时分别实现了0.45%、0.45%和63个周期的平均绝对误差(MAE),相较于基于CNN-BiLSTM的先进方法,误差分别降低了约22%、33%和30%;(ii)对于浅循环电池单元,MuRAIN在估计SOC和SOH时的平均MAE分别为0.69%和0.37%,相较于CNN-BiLSTM方法,误差分别减少了约61%和45%。
English Abstract
Abstract Effective and reliable battery management systems rely on accurate co-estimation of multiple battery states, including state of charge (SOC), state of health (SOH), and remaining useful life (RUL). However, this task presents significant challenges due to the varying time resolutions and complex interactions between these states across different timescales, especially when historical battery data is unavailable. To address these challenges, we propose a novel end-to-end multi-time-resolution attention-based interaction network (MuRAIN) for the co-estimation of multiple battery states, directly utilizing current cycling data without the need for historical data . The MuRAIN approach incorporates a multi-resolution patching module that intelligently extracts features with varying timescales from the cycling data. An interactive learning module is then designed to model the intricate interactions between features at different timescales and update the feature sequence accordingly in parallel. Finally, an encoder module, leveraging the multi-head self-attention mechanism, coupled with a state estimator , is used to estimate the battery’s multiple states based on the updated feature sequence from the interactive learning module. To validate the effectiveness of the proposed approach, we employ three benchmark datasets comprising both full-cycling cells with diverse cycling protocols and shallow-cycling cells with varying cycling depths. The results show that (i) for full-cycling cells, MuRAIN achieves mean absolute errors (MAEs) of 0.45%, 0.45%, and 63 cycles for estimated SOC, SOH, and RUL respectively, which are reduced by approximately 22%, 33%, and 30%, compared to a state-of-the-art method based on CNN-BiLSTM; (ii) For shallow-cycling cells, MuRAIN achieves average MAEs of 0.69% and 0.37% for estimated SOC and SOH, respectively, with reductions of about 61% and 45% compared to the CNN-BiLSTM method.
S
SunView 深度解读
该多时间分辨率注意力交互网络技术对阳光电源ST系列储能变流器及PowerTitan储能系统的BMS优化具有重要价值。MuRAIN可实现SOC、SOH、RUL的高精度联合估计,无需历史数据即可基于当前循环数据运行,特别适合浅循环工况下的商业储能应用。该技术可集成至iSolarCloud平台,提升预测性维护能力,延长电池寿命,降低储能系统全生命周期成本。其多尺度特征提取与交互学习机制为阳光电源下一代智能BMS算法开发提供创新思路,可应用于储能PCS、充电桩等多条产品线。