← 返回

一种物理增强型动态耦合混合Kolmogorov–Arnold网络用于可解释的电池荷电状态估计

A physics-enhanced hybrid Kolmogorov–Arnold network with dynamic coupling for interpretable battery state-of-charge estimation

作者 Yuqian Fan · Yi Lia · Chong Yana · Yaqi Liang · Ye Yuana · Zihang Lia · Meng Suna · Lixin Wangb · Xiaoying Wua · Zhiwei Rena · Liangliang Weic · Xiaojun Tanc
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 400 卷
技术分类 储能系统技术
技术标签 储能系统 电池管理系统BMS SiC器件 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Incorporates mechanical stress into SOC estimation validated on 174 batteries across diverse conditions.
语言:

中文摘要

准确估计锂离子电池的荷电状态(SOC)是电池管理系统中的核心任务。然而,SOC估计在复杂工况下面临着精度不足、鲁棒性差以及可解释性弱等挑战。本文提出了一种物理增强型混合Kolmogorov–Arnold网络(PEHKAN)方法,这是首个将机械应力特性与电化学–热力学多物理场建模相结合的方法。构建了改进的Butler–Volmer方程电化学势能模块,以及具有协同控制的温度–压力耦合扩散动力学模块;这些模块显式地刻画了电化学、热力学与机械应力之间的协同作用。此外,设计了一种动态门控融合机制,以实现物理模型与数据驱动模块之间的自适应加权,解决了传统方法在动态工况切换过程中性能下降的问题。进一步引入物理约束项,确保模型在优化SOC估计精度的同时,符合电池的物理特性。通过符号回归与特征归因分析揭示了多种物理量之间的非线性关联,增强了模型的可解释性。在174个电池数据集上的实验结果表明,PEHKAN在多种工作条件、温度环境及电池类型下均显著优于现有方法,在小样本条件下(1/4训练数据)平均绝对误差(MAE)低至0.00312。本研究为复杂动态环境下的电池状态估计提供了一种融合物理可解释性与数据驱动优势的新范式。

English Abstract

Abstract Estimating the state of charge (SOC) for lithium-ion batteries is a core task for battery management systems. However, SOC estimation faces challenges such as insufficient accuracy, poor robustness, and weak interpretability, especially under complex operating conditions. This paper proposes a physics-enhanced hybrid Kolmogorov–Arnold network (PEHKAN) method, which is the first method to integrate mechanical stress characteristics with electrochemical–thermodynamic multiphysics modeling. An improved Butler–Volmer equation electrochemical potential energy module and a temperature–pressure coupled diffusion dynamics module with collaborative control are constructed; these modules explicitly model the synergistic effects of electrochemistry, thermodynamics, and mechanical stress. Additionally, a dynamic gating fusion mechanism is designed to achieve adaptive weighting between the physical model and data-driven modules, addressing the performance degradation issue that is traditionally encountered during dynamic operating condition transitions. Furthermore, physical constraint terms are introduced to ensure that the model optimizes the SOC estimation accuracy while adhering to the physical properties of the battery. Symbolic regression and feature attribution analysis reveal the nonlinear correlations between these various physical quantities, enhancing the interpretability of the model. The experimental results on 174 battery datasets demonstrate that PEHKAN outperforms existing methods significantly across multiple operating conditions, temperatures, and battery types, achieving an MAE as low as 0.00312 under small-sample conditions (1/4 of the training data). This study offers a novel paradigm for battery state estimation in complex dynamic environments, combining physical interpretability with data-driven advantages.
S

SunView 深度解读

该物理增强混合神经网络SOC估算技术对阳光电源ST系列储能变流器及PowerTitan系统的电池管理具有重要价值。其电化学-热力学-机械应力多物理场耦合建模可直接应用于BMS优化,在复杂工况下MAE低至0.00312,显著提升储能系统全生命周期安全性与经济性。动态门控融合机制可增强iSolarCloud平台预测性维护能力,符号回归的可解释性有助于SiC器件热管理协同优化,为储能PCS与充电桩产品线提供高精度状态估计新范式。