← 返回
储能系统技术 储能系统 SiC器件 多物理场耦合 ★ 5.0

多孔介质热化学储能反应器中的辐射传热与结构优化

Radiative heat transfer and structural optimization in porous media thermochemical energy storage reactor

作者 Danni Ma · Bachirou Guene Lougo · Shuo Zhang · Boxi Geng · Boshu Jiang · Tiantian Yan · Ruming Pan · Mohammad Rafiqu · Wei Wang · Yong Shuai
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 储能系统技术
技术标签 储能系统 SiC器件 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Lowering insulation conductivity doubles porous medium temperature but compromises radial uniformity.
语言:

中文摘要

摘要 基于金属氧化物氧化还原循环(MORC)的热化学储能(TCES)反应器对于将间歇性可再生能源整合到高温应用中至关重要。然而,其性能常受到复杂的多物理场耦合作用和不足的热管理能力的限制。本研究采用经过验证的二维轴对称多物理场模型,对多孔填充床反应器中的传热过程进行了全面分析。结果表明,显著降低保温层热导率可使多孔介质平均温度几乎提高一倍,但会牺牲径向温度均匀性。当传热流体入口温度超过1000 K时,辐射传热显著增强,占总热通量的比例可达90%,而提高流速仅带来微弱的对流传热增益。较低的孔隙率可减小轴向热梯度,但会降低辐射传热效率。结构优化结果显示,增大多孔介质半径可使核心温度升高6%,而通过针对性的保温结构设计可在极小外围热损失的情况下实现10.2%的温度提升。这些发现证实了在极端高温条件下,辐射是主导的传热机制,并凸显了热物理性能与几何结构协同优化的必要性。本研究推动了高性能MORC基气固系统中TCES反应器的设计进展,并建立了稳健的建模框架,为下一代热能储存技术的规模化发展提供了指导。

English Abstract

Abstract Thermochemical energy storage (TCES) reactors based on metal oxide redox cycles (MORC) are essential for integrating intermittent renewable energy into high-temperature applications. However, their performance is often constrained by complex multiphysics interactions and inadequate thermal management. This study conducts a comprehensive analysis of heat transfer in a porous packed-bed reactor using a validated two-dimensional axisymmetric multiphysics model. The results reveal that a significant reduction in insulation thermal conductivity nearly doubles the average porous medium temperature, though this compromises radial temperature uniformity. Increasing the heat transfer fluid’s inlet temperature above 1000 K substantially enhances radiative heat transfer, which accounts for up to 90 % of the total heat flux, whereas higher flow rates only provide marginal convective gains. A lower porosity reduces axial thermal gradients but decreases radiative heat transfer efficiency. Structural optimization shows that increasing the porous medium radius raises the core temperature by 6 %, while targeted insulation design achieves a 10.2 % gain with minimal peripheral loss. These findings confirm radiation as the dominant heat transfer mechanism at extreme temperatures and highlight the need for coupled thermophysical and geometric optimization. This study advances TCES reactor design for high-performance MORC-based gas–solid systems and establishes a robust modeling framework to guide the scalable development of next-generation thermal energy storage technologies.
S

SunView 深度解读

该热化学储能研究对阳光电源ST系列储能系统的热管理优化具有重要参考价值。研究揭示的辐射传热主导机制(占比达90%)及多物理场耦合建模方法,可应用于PowerTitan等大型储能系统的热仿真设计。其结构优化策略——通过调整介质半径提升核心温度6%、优化绝缘设计获得10.2%性能提升,可指导PCS功率模块的散热结构改进及SiC器件的热应力管理。多物理场耦合分析框架与阳光电源在三电平拓扑、GFM控制等领域的仿真需求高度契合,有助于提升储能系统极端工况下的可靠性与能量密度。