← 返回
基于隐私保护的物理信息深度算子代理模型的电–气耦合系统连锁故障实时主动控制
Real-time proactive control of cascading failures in integrated electricity–gas systems based on a privacy-preserving physics informed deep operator surrogate model
| 作者 | Jiachen Zhang · Qinglai Guo · Yanzhen Zhou · Hongbin Sun |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A PI-DeepONet-based surrogate model is proposed for accelerating gas network dynamic simulations. |
语言:
中文摘要
摘要 随着电力系统与天然气网络之间耦合程度的加深,两类系统间的故障传播风险也随之上升,威胁综合能源系统的安全运行。然而,采用传统数值方法进行动态能量流分析存在计算效率低下的问题,难以满足实时紧急控制的需求。此外,系统之间直接共享模型与数据在实际应用中仍不可行。为应对上述挑战,本文提出了一种面向电–气耦合系统(IEGS)连锁故障的快速主动控制方法,利用物理信息驱动的天然气网络代理模型显著加速安全分析过程。所提出的框架结合了物理信息驱动的深度算子神经网络(PI-DeepONet),以实现故障条件下快速的能量流计算,并引入自编码器实现数据压缩与加密。该方法进一步融合了一种实时应用算法以实现主动控制。数值仿真案例表明,该方法能够有效预测天然气网络的动态响应,同时保障运行数据与模型的隐私性。此外,由该方法计算得到的主动控制信号可为电力系统提供有效的响应时间窗口,以应对天然气网络中的故障,从而降低潜在损失。
English Abstract
Abstract As the coupling between the power system and the gas network increases, the risk of fault propagation between the two systems also escalates, jeopardizing the safe operation of integrated energy systems. However, the computational inefficiency of dynamic energy flow analysis using traditional numerical methods makes it challenging to meet the requirements of real-time emergency control. Additionally, direct model and data sharing between these systems remain impractical. To address these challenges, this paper presents fast proactive control for cascading failures in integrated electricity and gas systems (IEGS), leveraging physics informed gas network surrogate model to significantly expedite the security analysis process. The proposed framework integrates physics informed Deep Operator Neural Network (PI-DeepONet) for fast energy flow computation under fault conditions, coupled with an autoencoder for data compression and encryption. The proposed method is further combined with a real-time application algorithm for proactive control. Numerical case studies demonstrate that the method effectively predicts the dynamics of the gas network, while ensuring the privacy of operational data and models. Besides, the proactive control signals calculated by the proposed method provide the power system with available escape time to respond to the faults in the gas network, thereby reducing potential losses.
S
SunView 深度解读
该电-气耦合系统级联故障预测技术对阳光电源储能系统具有重要价值。基于物理信息深度学习的实时故障预测方法可应用于PowerTitan储能系统与iSolarCloud平台,实现多能源系统协同控制。其隐私保护数据压缩技术可增强ST系列PCS在综合能源场景的安全性,支持虚拟电厂VPP应用中电储气多系统协调。深度算子网络加速动态能流计算的思路,可启发GFM/VSG控制算法优化,提升储能系统在复杂电网故障下的主动支撑能力与预测性维护水平。