← 返回
结合电化学与数据稀疏高斯过程回归的锂离子电池混合建模
Combining electrochemistry and data-sparse Gaussian process regression for lithium-ion battery hybrid modeling
| 作者 | Jackson Fogelquis · Xinfan Lin |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 399 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 电池管理系统BMS SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Physics-based Li-ion battery model is efficiently enhanced using machine learning. |
语言:
中文摘要
摘要 锂离子电池的广泛应用推动了先进电池管理系统(BMS)的同步发展,这些系统旨在通过最先进的控制、诊断和预测技术来最大化安全性和性能。为了实现这些功能,电池模型必须能够准确预测输出电压和物理内部状态,但由于系统不确定性不可避免以及在线计算资源有限,这一目标具有挑战性。为此,本文提出了一种计算高效的混合建模框架,该框架将基于物理原理的电化学电池模型与高斯过程回归(GPR)机器学习模型相结合,以补偿由系统不确定性引起的输出预测误差。该框架的一个关键特征是提出了一种数据采样方法,该方法利用GPR在稀疏数据条件下的预测能力,从而降低计算开销。所提出的混合模型通过实验进行了验证,在六种测试工况下,其平均预测均方根误差(RMSE)为7.3 mV,而单独使用的电化学模型为119 mV。观测到的计算时间与模拟时间之比为0.003,完全满足在线BMS应用的需求。最后,在模拟的BMS演示中,与单独使用的电化学模型相比,该混合模型使参数估计误差降低了近一个数量级,电压预测RMSE降低了63%,状态估计RMSE降低了52%。
English Abstract
Abstract The widespread adoption of lithium-ion batteries is driving the concurrent development of advanced battery management systems, which seek to maximize safety and performance through state-of-the-art control, diagnostic, and prognostic techniques. To enable these capabilities, battery models must provide accurate predictions of output voltage and physical internal states, which is challenging due to the inevitable presence of system uncertainties and limited online computational resources. In response, a computationally-efficient hybrid modeling framework is proposed that integrates a physics-based electrochemical battery model with a Gaussian process regression (GPR) machine learning model to compensate for output prediction errors due to system uncertainties. A key feature of the framework is a proposed data sampling procedure that mitigates computational expense by leveraging the prediction capability of GPR under sparse data. The hybrid model was experimentally validated, yielding an average prediction root-mean-square error (RMSE) of 7.3 mV across six testing profiles, versus 119 mV for the standalone electrochemical model. The observed ratio of computation time to modeled time was 0.003, which is amply sufficient for online BMS applications. Finally, in a simulated BMS demonstration, the hybrid model was observed to reduce parameter estimation errors by one order of magnitude, the voltage prediction RMSE by 63 %, and the state estimation RMSE by 52 % when compared against the standalone electrochemical model.
S
SunView 深度解读
该混合建模技术对阳光电源ST系列储能变流器及PowerTitan系统的BMS优化具有重要价值。通过融合电化学模型与高斯过程回归,可将电压预测误差从119mV降至7.3mV,参数估计精度提升一个数量级,且计算时间比仅为0.003,满足在线应用需求。该方法可直接应用于阳光储能系统的SOC/SOH估算、故障诊断及寿命预测功能,结合iSolarCloud平台实现更精准的预测性维护,提升储能系统安全性与经济性,并可扩展至电动汽车OBC充电管理场景。