← 返回
基于热电冷却的电池热管理预测性温度控制与运行特性研究
Predictive temperature control and operational characteristics study for battery thermal management using thermoelectric cooling
语言:
中文摘要
摘要 针对电池在高倍率放电、大电流运行及快速功率释放等工况下的热调控需求,本文提出一种高效的金属辅助热电冷却(TEC)电池热管理系统(BTMS),并构建了一种快速温度控制模型及其建模方法,以平衡电池产热与热电散热之间的关系。在恒定倍率和变倍率放电条件下进行的实验验证表明了该模型的有效性,同时通过综合分析揭示了TEC系统的运行动态、性能阈值以及增强热管理能力的优化路径。实验结果表明,在恒定放电倍率(0.75 C–1.50 C)下,通过优化TEC工作电流,所提出的热调控模型可将电池峰值温度有效控制在26 ± 4.8 °C范围内。与无TEC系统相比,该系统最大温度降低了25.6 °C,热稳定速度提高了62.5%,动态温差仅增加1.4–2.4 °C。在变倍率放电条件下,验证了TEC温度控制的快速响应特性,能够满足短时高倍率工况下快速温度调节的需求,所有变倍率条件下的电池最高温度均被控制在26 ℃ ± 2.9 ℃以内。在TEC电池热管理系统中发现,电池的动态温差由其输入电流决定。最后,本研究中TEC热管理系统的能耗仅占电池总能量的2.55∼11.26%。未来通过优化TEC向电池间传冷性能及电池目标温度控制范围,将进一步提升电池组的均温性能与能效水平。
English Abstract
Abstract To address the thermal regulation demands of batteries under high-rate discharge, high-current operation, and rapid power release scenarios, this paper proposes a high-efficiency metal-assisted thermoelectric cooling (TEC) battery thermal management system (BTMS) and proposes a fast temperature-control model and its modeling method for balancing the battery heat production and thermoelectric heat dissipation. Experimental validation conducted under both constant-rate and variable-rate discharge conditions demonstrates the model’s efficacy, while comprehensive analysis reveals the TEC system’s operational dynamics, performance thresholds, and optimization pathways for enhanced thermal regulation. Experimental results demonstrate that under constant discharge rates (0.75 C–1.50 C), the proposed thermal regulation model effectively controls battery peak temperatures within 26 ± 4.8 °C through optimized TEC operating currents. Compared to non-TEC scenarios, the system achieves a 25.6 °C reduction in maximum temperature and 62.5 % faster thermal stabilization, with only a marginal 1.4–2.4 °C increase in dynamic temperature differentials. In the variable-rate discharge condition, the fast response characteristic of TEC temperature control was confirmed, which can meet the demand for rapid temperature control for a short time and high rate. The maximum battery temperature was controlled at 26 ℃ ± 2.9 ℃ in all variable-rate conditions. In the TEC battery thermal management system , it is found that the dynamic temperature difference of the battery is determined by its input current. Finally, in this study, the energy consumption of the TEC thermal management system only accounted for 2.55∼11.26 % of the total battery energy. In the future, by optimizing the performance of cold transfer from TEC to the inter-cell and the target temperature control range of the cell, cell homogenization performance and energy consumption will be further improved.
S
SunView 深度解读
该热电制冷电池热管理技术对阳光电源储能系统具有重要应用价值。在ST系列PCS和PowerTitan储能产品中,高倍率充放电场景下电池温控是关键挑战。研究提出的TEC快速温控模型可将峰值温度控制在26±4.8°C,温度稳定速度提升62.5%,能耗仅占2.55-11.26%,为储能系统电池包热管理优化提供新思路。结合阳光电源SiC功率器件技术,可进一步提升TEC驱动效率,优化电芯间均温性能,延长储能系统寿命,提升调频等高倍率应用场景的安全性与经济性。该技术同样适用于充电桩大功率快充的电池热管理需求。