← 返回
交互式多尺度建模以连接原子特性与锂-二氧化碳电池设计中的电化学性能
Interactive multiscale modeling to bridge atomic properties and electrochemical performance in Li-CO2 battery design
| 作者 | Mohammed Lemaalem · Selva Chandrasekaran Selvaraj · Ilias Papailias · Naveen K.Dandu · Arash Namaeighasemi · Larry A.Curtiss · Amin Salehi-Khojin · Anh T.Ngo |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 有限元仿真 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A comprehensive framework integrating DFT AIMD MD and FEA reveals atomic and cell-level insights into Li-CO2 battery performance. |
语言:
中文摘要
摘要 锂-二氧化碳(Li-CO2)电池因其高的理论能量密度和固定CO2的能力而成为有前景的储能系统,其依赖于放电/充电循环过程中可逆生成Li2CO3/C。本文提出了一种多尺度建模框架,整合了密度泛函理论(DFT)、从头算分子动力学(AIMD)、经典分子动力学(MD)以及有限元分析(FEA),用于研究原子尺度和电池层级的性质。所研究的Li-CO2电池由锂金属负极、离子液体电解质以及负载Sb0.67Bi1.33Te3催化剂的碳布正极组成。采用Kubo-Greenwood公式,通过DFT和AIMD计算了Sb0.67Bi1.33Te3和Li2CO3的电子电导率,并研究了阴极催化剂表面的CO2还原反应机理。MD模拟计算了CO2扩散系数、Li+迁移数、离子电导率以及Li+溶剂化结构。基于原子尺度模拟获得的参数构建FEA模型,成功再现了在1 mA/cm2电流密度下的实验电压-容量曲线,并揭示了阴极中Li2CO3/C沉积、孔隙率及CO2浓度随放电速率变化的时空分布特征。结果表明,在0.1 mA/cm2和1 mA/cm2下,Li2CO3分别形成大尺寸块状和薄层状沉积物,导致孔隙率呈现分散或局部变化。由于过度沉积放电产物造成孔道堵塞,限制了CO2向阴极内部的传输,电池容量随电流密度增加呈指数下降,从0.1 mA/cm2时的81,570 mAh/g降至1 mA/cm2时的6,200 mAh/g。因此,可通过增强CO2传输能力、调控Li2CO3沉积行为以及优化阴极结构来提升Li-CO2电池的性能。
English Abstract
Abstract Li-CO 2 batteries are promising energy storage systems due to their high theoretical energy density and CO 2 fixation capability, relying on reversible Li 2 CO 3 /C formation during discharge/charge cycles. We present a multiscale modeling framework integrating Density Functional Theory (DFT), Ab-Initio Molecular Dynamics (AIMD), classical Molecular Dynamics (MD), and Finite Element Analysis (FEA) to investigate atomic and cell-level properties. The considered Li-CO 2 battery consists of a lithium metal anode, an ionic liquid electrolyte, and a carbon cloth cathode with Sb 0.67 Bi 1.33 Te 3 catalyst. DFT and AIMD determined the electrical conductivities of Sb 0.67 Bi 1.33 Te 3 and Li 2 CO 3 using the Kubo–Greenwood formalism and studied the CO 2 reduction mechanism on the cathode catalyst. MD simulations calculated the CO 2 diffusion coefficient, Li + transference number, ionic conductivity, and Li + solvation structure. The FEA model, parameterized with atomistic simulation data, reproduced the available experimental voltage–capacity profile at 1 mA/cm 2 and revealed spatio-temporal variations in Li 2 CO 3 /C deposition, porosity, and CO 2 concentration dependence on discharge rates in the cathode. Accordingly, Li 2 CO 3 can form large and thin film deposits, leading to dispersed and local porosity changes at 0.1 mA/cm 2 and 1 mA/cm 2 , respectively. The capacity decreases exponentially from 81,570 mAh/g at 0.1 mA/cm 2 to 6200 mAh/g at 1 mA/cm 2 , due to pore clogging from excessive discharge product deposition that limits CO 2 transport to the cathode interior. Therefore, the performance of Li-CO 2 batteries can be improved by enhancing CO 2 transport, regulating Li 2 CO 3 deposition, and optimizing cathode architecture.
S
SunView 深度解读
该多尺度建模方法对阳光电源储能系统开发具有重要借鉴价值。研究揭示Li-CO2电池容量随放电倍率呈指数衰减(0.1mA/cm²时81570mAh/g降至1mA/cm²时6200mAh/g),核心瓶颈在于Li2CO3沉积堵塞孔隙限制CO2传输。该建模框架结合DFT、分子动力学与有限元分析,可应用于ST系列储能变流器的电池管理系统优化,通过精准建模预测不同倍率下的容量衰减机制,指导PowerTitan储能系统的热管理与充放电策略。特别是其揭示的离子传输-沉积形态-孔隙演化耦合机制,可为iSolarCloud平台的电池健康状态预测算法提供理论支撑,实现储能系统全生命周期性能优化。