← 返回

航空航天应用中1-MVA三电平ANPC逆变器的实用热解决方案

Practical Thermal Solution for 1-MVA Three-Level ANPC Inverter in Aerospace Applications

语言:

中文摘要

在航空航天应用中,高性能冷却系统对确保电力逆变器在极端工况下的可靠性至关重要。本文提出了一种适用于1-MVA碳化硅三电平有源中点钳位逆变器的实用针翅液冷系统设计。通过有限元分析与计算流体动力学仿真,评估了系统的热-流体性能,在70°C冷却液温度下满足航空环境的散热需求。采用交错针翅结构提升换热效率,兼顾可制造性与成本。对比了串并联冷板配置的流体分布均匀性与经济性,并优化密封设计以防止泄漏。实验验证表明,该系统可有效管理超过7.2 kW的功率损耗,结温低于150°C,压降低,具备高鲁棒性与成本效益。

English Abstract

In aerospace applications, high-performance cooling systems are essential to ensure the reliability of power inverters under extreme operating conditions. This article presents the design and analysis of a practical pin-fin liquid cooling system for a 1-MVA silicon carbide (SiC)-based three-level (3-L) active neutral point clamped (ANPC) inverter. The thermal and hydraulic performance was evaluated through finite element analysis (FEA) models of SiC power modules and computational fluid dynamics (CFDs) simulations, confirming the heat transfer efficiency required for aerospace environments at 70~^ C coolant temperature. The cooling solution leverages a staggered pin-fin arrangement to improve heat transfer efficiency while maintaining manufacturability and cost-effectiveness. Two different cold plate configurations—series and parallel—were compared for uniform fluid distribution and cost-effectiveness. Special attention was also given to sealing design, ensuring reliability in preventing coolant leakage. The system effectively manages over 7.2-kW power loss, maintaining junction temperature T_j safely below the 150~^ C limit. Experimental tests validated the cooling system’s hydraulic and thermal performance, demonstrating its ability to handle high power losses with low pressure drop, making it a robust and cost-effective solution for high-power aerospace inverters.
S

SunView 深度解读

该1-MVA三电平ANPC逆变器的针翅液冷方案对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有直接应用价值。研究中的交错针翅结构设计和串并联冷板配置优化可提升SiC功率模块在高功率密度场景下的热管理能力,使结温控制在150°C以下,压降更低。该方案的有限元与CFD联合仿真方法可应用于阳光电源三电平拓扑产品的热设计优化,特别是在极端环境下的可靠性提升。针对7.2kW以上功率损耗的散热管理经验,可为SG系列大功率光伏逆变器和充电桩产品的液冷系统设计提供参考,降低热阻、提高功率密度,增强产品在高温环境下的稳定性和成本竞争力。