← 返回
少即是多:用于SiC功率模块的非TIM风冷陶瓷封装以扩展热性能与机械可靠性边界
Less Is More: Non-TIM Air-Cooled Ceramic Packaging for SiC Power Modules to Extend Thermal Performance and Mechanical Reliability Boundaries
| 作者 | Zhaobo Zhang · Xibo Yuan · Wenzhi Zhou · Mudan Chen · Elaheh Arjmand · Bohao Zhang |
| 期刊 | IEEE Transactions on Components, Packaging and Manufacturing Technology |
| 出版日期 | 2024年12月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 功率模块 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 功率模块封装 无热界面材料 风冷架构 热性能 可靠性 |
语言:
中文摘要
功率模块封装仍然是阻碍碳化硅(SiC)器件在变流器中实现高功率密度和最佳可靠性的制约因素之一。本文提出了一种无热界面材料(TIM)的风冷功率模块架构,即芯片直接贴装在散热器上(chip - on - heatsink),以提高热性能和结构可靠性。芯片直接贴装在散热器上的封装方式无需热界面材料,即可将导电铜走线与氮化铝(AlN)陶瓷散热器结合在一起。这种无热界面材料的封装设计简化了制造工艺,因为芯片与散热器之间的层叠结构较少,从而省去了一些步骤,如在基板上粘贴底部铜层和组装散热器。本文制作了两种1200 V、36 A的功率模块并进行了实验对比。一种采用无热界面材料结构,集成了尺寸为<inline - formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex - math notation="LaTeX">$50\times 38\times 24$ </tex - math></inline - formula> 毫米的氮化铝陶瓷散热器;另一种采用标准的传统封装,配备相同尺寸的6063铝合金散热器。在各种风冷和功率损耗条件下进行测试,与传统模块相比,无热界面材料功率模块的结到环境热阻始终降低约2%,这表明无热界面材料封装的热性能得到了提升。此外,连续性能测试证实,无热界面材料功率模块封装适用于650 V直流母线、2 kW的运行条件,使其成为功率变流器应用的可行选择。此外,采用电热机械有限元分析(FEA)模型和数字图像相关(DIC)测试来评估平面内变形。结果显示,与传统结构相比,无热界面材料封装的MOSFET沿指定路径的最大应力显著降低,降幅高达40.2%,这表明所提出的封装具有更好的可靠性潜力。
English Abstract
Power module packaging remains one of the constraints preventing silicon carbide (SiC) devices from realizing high power density and optimal reliability in converters. This article proposes a non-thermal interface material (TIM) air-cooled power module architecture, i.e., chip-on-heatsink, to enhance both thermal performance and structural reliability. The chip-on-heatsink packaging bonds conductive copper traces and an aluminum nitride (AlN) ceramic heatsink together without requiring TIM. This non-TIM packaging design streamlines the manufacturing process by eliminating certain steps, such as attaching the bottom copper layer on substrates and assembling heatsinks, since there are few layer stacks between chips and the heatsink. Two types of 1200 V, 36 A power modules are manufactured and experimentally compared. One utilizes the non-TIM structure integrated with 50 38 24 mm AlN ceramic heatsink, while the other follows the standard conventional packaging equipped with the same size 6063 Al Alloy heatsink. Tested under various air cooling and power loss conditions, the non-TIM power module consistently exhibits approximately a 2% reduction in junction-to-ambient thermal resistance compared to the traditional module, indicating the enhanced thermal performance of the non-TIM packaging. Furthermore, continuous performance testing confirms the suitability of the non-TIM power module packaging for operation at 650 V dc-link with 2 kW, making it a feasible choice for power converter applications. Moreover, an electro-thermal-mechanical finite element analysis (FEA) model and the digital image correlation (DIC) test are employed to evaluate the in-plane deformation. Results reveal that the maximum stress of the MOSFETs for the non-TIM packaging is significantly reduced by up to 40.2% along the defined path compared to the conventional structure, demonstrating the potential for better reliability with the proposed packaging.
S
SunView 深度解读
从阳光电源的业务视角来看,这项无导热界面材料(Non-TIM)的芯片直接散热封装技术对我们的核心产品线具有重要战略意义。在光伏逆变器和储能变流器领域,SiC功率器件的可靠性和散热性能直接决定了系统的功率密度和长期稳定性,而这正是我们追求高效率、小型化产品的关键瓶颈。
该技术的核心价值体现在三个维度:首先,通过消除传统导热界面材料,结温到环境的热阻降低约2%,这在大功率应用场景下可显著提升器件的过载能力和温度裕度,对我们开发250kW以上的大功率组串式逆变器和兆瓦级储能PCS系统尤为关键。其次,芯片应力降低40.2%意味着功率循环寿命的大幅提升,这直接关系到我们产品在沙漠、高原等极端环境下的25年质保承诺。第三,简化的封装工艺可降低制造成本,提升产品竞争力。
从技术成熟度评估,该方案已完成2kW/650V的实验验证,但距离我们逆变器动辄几十到数百千瓦的应用场景仍有差距。AlN陶瓷散热器的加工成本和量产一致性是主要挑战,特别是在复杂风道设计和大尺寸模块应用中。此外,空气冷却方式在户外高温环境下的性能边界需要进一步验证。
建议我们的中央研究院与该研究团队建立合作,重点评估该技术在1500V高压系统和液冷混合方案中的适配性,同时开展针对光伏应用的长期可靠性测试。若技术验证成功,可优先应用于高端工商业储能系统,为未来功率密度提升储备核心技术能力。