← 返回
储能系统技术 储能系统 SiC器件 ★ 5.0

一种改进的伞蜥算法用于求解不确定性环境下配电网络中可再生能源最优规划问题

A novel improved Frilled Lizard algorithm for solving the optimal planning problem of renewable energy sources within distribution grids under uncertainties

语言:

中文摘要

摘要 本研究设计并提出了一种新的改进型伞蜥优化算法,以解决基于可再生能源的分布式发电在辐射状配电网中的最优规划问题。主要目标是最小化功率损耗、提升电压水平并改善电压稳定性,该问题被构建为一个多目标优化问题。在辐射状配电网中进行可再生能源的规划是一个复杂的问题,必须考虑可再生能源出力的不确定性和负荷需求波动的影响。为此,我们建立了一个合适的概率模型,基于特定时间段和地理位置收集的逐小时季节性数据(包括风速、太阳辐照度和环境温度),对可再生能源的随机发电功率进行估计。所提出的改进型伞蜥优化技术融合了三种不同的策略:适应度距离平衡、基于准反向学习机制以及柯西变异,以增强其搜索能力并避免陷入局部最优陷阱。所建议的改进型伞蜥优化算法成功应用于确定光伏组件串的最佳安装位置与额定容量、风力发电机的最佳容量及其功率因数。该方法的有效性通过IEEE 85节点配电网系统进行了验证。为进一步评估其可行性和鲁棒性,本文还与其他几种近期高效的优化算法进行了性能对比,包括灰狼优化器、黑翅鸢算法以及原始的伞蜥优化算法。结果表明,所提出的改进型伞蜥优化技术能够将年均功率损耗显著降低70.25%,电压偏差减少78.51%,电压稳定指数提高20.79%,整体性能优于其他对比方法。

English Abstract

Abstract In this research, a new improved frilled lizard optimization algorithm is designed and proposed to address the optimal planning problem of renewable energy sources-based distributed generation within radial distribution grids. The primary objective is to minimize power losses, elevate the voltage profile, and improve voltage stability, formulated as a multi-objective optimization problem. The planning process of renewable energy sources in the radial distribution grid is a complex problem that requires accounting for uncertainties in renewable energy sources’ power output and load demand fluctuations. To this end, we have developed an appropriate probability model to estimate the stochastic power generation from renewable energy sources based on hourly seasonal data, including wind speed , solar irradiance , and ambient temperature collected over a specified time frame and location. The developed improved frilled lizard optimization technique incorporates three distinct strategies: fitness distance balance, quasi-opposite-based learning, and Cauchy mutation, to enhance its searching capabilities and avoid falling into local optimal traps. The suggested improved frilled lizard optimization is successfully applied to identify the optimal locations and rating capacities of solar photovoltaic strings and wind turbines , as well as the power factor of wind turbines . The effectiveness of the presented approach is demonstrated using the IEEE 85-bus distribution grid. To further assess its feasibility and robustness, a performance comparison is conducted against other recent effective algorithms, including the grey wolf optimizer, the black-winged kite algorithm, and the original frilled lizard optimization. Results show that the proposed improved frilled lizard optimization technique significantly reduces annual average power losses by 70.25%, decreases voltage deviation by 78.51%, and improves the voltage stability index by 20.79%, outperforming other methods.
S

SunView 深度解读

该改进蜥蜴算法针对分布式可再生能源优化配置问题,对阳光电源ST系列储能变流器和SG系列光伏逆变器的并网规划具有重要价值。算法考虑风光出力不确定性和负荷波动,通过多目标优化降低网损70.25%、提升电压稳定性20.79%,可直接应用于iSolarCloud平台的智能选址和容量配置模块。其适应度距离平衡和柯西变异策略可优化PowerTitan储能系统的功率因数控制,提升GFM/GFL控制策略在弱电网场景的鲁棒性,为分布式能源集群协调控制提供算法支撑。