← 返回
利用数字孪生技术进行电池管理:案例研究综述
Leveraging Digital Twin Technology for Battery Management: A Case Study Review
| 作者 | Judith Nkechinyere Njoku · Ebuka Chinaechetam Nkoro · Robin Matthew Medina · Cosmas Ifeanyi Nwakanma · Jae-Min Lee · Dong-Seong Kim |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 电池管理系统BMS SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电池管理系统 数字孪生技术 人工智能 状态估计 性能优化 |
语言:
中文摘要
电池管理系统BMS复杂性增加导致处理准确实时监测和控制所需海量数据面临挑战。现有严重依赖人工智能AI的BMS框架常因数据限制而影响状态估计精度,最终影响电池性能和安全性。提出集成数字孪生DT技术应对这些挑战。DT创建物理电池系统的虚拟表示,通过先进AI算法实现增强监测、预测性维护和优化性能。本研究全面探索BMS的DT技术。首先综述基本概念,包括DT在电池管理中的定义、角色和高层架构。其次检查研究和行业案例研究以识别开发强大电池DT的必要技术和工具。提出详细框架将DT与现有BMS基础设施集成,聚焦可扩展性、成本效益和实际实施策略。最后讨论该领域开放研究挑战和未来机遇,强调DT对BMS演进的潜在影响。
English Abstract
The increasing complexity of battery management systems (BMS) has led to challenges processing the vast amounts of data required for accurate real-time monitoring and control. Existing BMS frameworks, which rely heavily on artificial intelligence (AI), often struggle with data limitations that impact the precision of state estimates, ultimately affecting battery performance and safety. The integration of digital twin (DT) technology has been proposed to address these challenges. DTs create virtual representations of physical battery systems, enabling enhanced monitoring, predictive maintenance, and optimized performance through advanced AI algorithms. This study presents a comprehensive exploration of DT technology for BMS. First, we review the fundamental concepts, including DTs’ definitions, roles, and high-level architecture in battery management. Second, we examine research and industry-based case studies to identify the necessary technologies and tools for developing robust battery DTs. We propose a detailed framework for integrating DTs with existing BMS infrastructure, focusing on scalability, cost-effectiveness, and practical implementation strategies. Finally, we discuss the open research challenges and future opportunities in the field, emphasizing the potential impact of DTs on the evolution of BMSs.
S
SunView 深度解读
该数字孪生电池管理技术对阳光电源BMS产品线有前瞻性参考价值。阳光储能BMS和车载OBC可借鉴DT技术实现虚拟仿真和优化。数字孪生虚拟表示可应用于阳光电池系统的状态监测和预测性维护。AI算法与DT集成的思路可提升阳光BMS的智能化水平。该综述提出的集成框架和实施策略,对阳光BMS数字化转型有指导意义。DT技术结合阳光iSolarCloud平台,可实现电池全生命周期管理和云端智能诊断,提升电池性能、安全性和经济性。