← 返回
基于增量容量曲线与S变换的电动汽车电池组健康状态估计
State-of-health estimation for EV battery packs via incremental capacity curves and S-transform
| 作者 | Siyi Tao · Jiangong Zhu · Yuan Lic · Siyang Chen · Xiuwu Wang · Xueyuan Wang · Bo Jiang · Wei Chang · Xuezhe Wei · Haifeng Dai |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 397 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 电池管理系统BMS |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Frequency and time domain features are extracted from cloud-based BMS data of EVs using S-Transform-based pEIS and IC curves. |
语言:
中文摘要
准确估计电动汽车(EV)中电池的健康状态(SOH)对于缓解用户的续航焦虑具有重要作用。然而,云端电池管理系统(BMS)数据质量欠佳,加之电池正极材料的多样性,为开发适用于实际EV应用的通用SOH估计方法带来了显著挑战。本研究提出了一种基于充电过程的可推广特征提取框架。该方法从增量容量(IC)曲线中提取时域特征,并利用S变换提取频域特征,同时引入了电池间不一致性指标。为评估所提取特征的鲁棒性,本文采用实验室数据进行了验证。此外,通过针对不同容量和正极材料电池的实验,分析了温度对电池容量及所提取特征的影响。进一步地,本研究使用了来自37辆电动汽车为期三年的实际运行数据,构建了机器学习(ML)和深度学习(DL)模型。基于上述结果,提出了一种融合门控循环单元(GRU)与LightGBM(LGB)的融合模型,实现了不受材料限制的电池SOH估计,其平均绝对百分比误差(MAPE)低于1.99%,最大误差(MAXE)不超过6.57%。
English Abstract
Abstract Accurate battery state-of-health (SOH) estimation in electric vehicles (EVs) plays a crucial role in mitigating user range anxiety. However, the suboptimal quality of cloud-based battery management system (BMS) data combined with the material heterogeneity of battery cathodes creates substantial barriers to developing universal SOH estimation methods for real-world EV applications. In this study, we propose a generalizable feature extraction framework based on the charging process. The method extracts time-domain features from incremental capacity (IC) curves and frequency-domain features using the S-transform, while also incorporating inter-cell inconsistency indicators. To assess the robustness of the extracted features, validation is conducted using laboratory data. Additionally, the influence of temperature on battery capacity and extracted features is analyzed through tests on batteries with varying capacities and cathode materials . Furthermore, real-world operational data from 37 EVs over a three-year period are employed to develop machine learning (ML) and deep learning (DL) models. Based on these results, a fusion model combining gated recurrent units (GRU) and LightGBM (LGB) is proposed, achieving material-independent battery SOH estimation with a mean absolute percentage error (MAPE) below 1.99 % and a maximum error (MAXE) under 6.57 %.
S
SunView 深度解读
该研究提出的电池SOH估计方法对阳光电源储能系统(PowerTitan/ST系列PCS)及充电桩产品具有重要价值。通过增量容量曲线和S变换的多域特征提取,结合GRU-LightGBM融合模型,可显著提升BMS电池健康状态评估精度(MAPE<1.99%)。该技术框架可集成至iSolarCloud平台,实现储能电站电池组的预测性维护和寿命管理,优化充放电策略,降低容量衰减风险。特别是其材料无关性特征,适用于阳光电源多元化储能场景中不同正极材料电池的统一管理,提升系统可靠性和经济性。