← 返回
储能系统技术 电池管理系统BMS ★ 5.0

一种基于实时频繁项集图像编码的锂离子电池健康状态数据高效估计方法

A data-efficient method for lithium-ion battery state-of-health estimation based on real-time frequent itemset image encoding

作者 Zhen Wangac · Li Zhaob · Yiding Liacd · Wenwei Wangac
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 398 卷
技术分类 储能系统技术
技术标签 电池管理系统BMS
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A feature extraction framework using frequent itemsets and dual attention is proposed.
语言:

中文摘要

摘要 下一代智能电池管理系统(BMS)需要对电池健康状态(SOH)进行精确的实时估计。然而,现有研究常常低估了由大量质量不一的在线数据所带来的挑战,以及由此引发的数据存储、传输和计算压力。本文提出了一种基于有损计数的门控双注意力Transformer(LC-GDAT)框架,在保持SOH估计高精度的同时,显著降低了历史数据的存储需求。为克服因数据压缩导致的信息丢失所引起的误差,本文引入了两个关键模块。第一个是并行时空有损计数特征提取模块(PTS-LC),该模块利用频繁项提取技术识别电池运行过程中重要的电压和充电容量模式,从而显著降低存储需求,并有效将频繁项转化为二维特征。第二个模块是门控双注意力Transformer(GDAT),其采用双分支结构,从位置和通道两个维度自适应地挖掘电池退化特性,并引入门控机制以增强这两个维度之间的交互作用。LC-GDAT的性能在实验室条件下124块电池的数据以及来自20辆电动汽车约29个月的实际运行数据上进行了全面评估。实验结果表明,LC-GDAT在实验室条件下的SOH估计误差最低为0.46%,在实际运行条件下的误差为2.23%。

English Abstract

Abstract Next-generation intelligent battery management systems (BMS) require accurate real-time estimation of battery state of health (SOH). However, existing studies often underestimate challenges arising from large volumes of online data with varying quality, as well as the resulting pressures on data storage , transmission, and computation. This paper proposes a lossy counting-based gated dual-attention Transformer (LC-GDAT) framework that substantially reduces historical data storage needs while maintaining high accuracy in SOH estimation. To overcome errors due to information loss from data compression , two critical modules are introduced. The first is the parallel temporal-spatial lossy counting feature extraction module (PTS-LC). It uses frequent-item extraction to identify important voltage and charging capacity patterns during battery operation. This significantly reduces storage demands and effectively transforms frequent items into two-dimensional features. The second module is the gated dual attention Transformer (GDAT). It uses a dual-branch structure to adaptively explore battery degradation characteristics from positional and channel dimensions. A gating mechanism is introduced to enhance interaction between these dimensions. The performance of LC-GDAT is comprehensively evaluated using data from 124 batteries under laboratory conditions, as well as real-world data from 20 electric vehicles collected over approximately 29 months. The experimental results show that LC-GDAT achieves the lowest SOH estimation errors of 0.46 % under laboratory conditions and 2.23 % under real-world conditions.
S

SunView 深度解读

该锂电池SOH实时估算技术对阳光电源储能系统具有重要应用价值。LC-GDAT框架通过有损计数算法大幅降低历史数据存储需求(实验室误差0.46%,实况误差2.23%),可直接应用于PowerTitan储能系统和ST系列PCS的BMS优化。双注意力Transformer机制能精准捕捉电池衰减特征,与iSolarCloud平台的预测性维护功能深度融合,提升储能电站全生命周期管理效率。该轻量化算法架构适配边缘计算场景,可减轻BMS数据传输压力,为大规模储能集群的智能运维提供技术支撑,同时可拓展至充电桩产品线的电池健康监测。