← 返回
面向eVTOL无人机应用的电池组观测器监控算法开发与硬件在环验证
Development and HIL validation of observer-based monitoring algorithms of battery packs for eVTOL UAV applications
| 作者 | Aleksander Sutia · Marc Budinger · Gianpietro Di Ritoa · Aurélien Reysset |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 电池管理系统BMS |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Development and optimal selection of SOC and SOT observers for UAV battery packs. |
语言:
中文摘要
电池管理系统对电动垂直起降无人机(eVTOL UAV)的性能具有显著影响。对于由多个电池组供电的无人机,为了优化能量与功率分配、延长循环寿命和飞行时间,需要在传感器数量受限的条件下对荷电状态和温度进行监测。为实现这一目标,首先通过专用实验测试辨识电池组的电-热耦合模型,并利用基于参考无人机飞行任务仿真所生成的电流负载曲线的实验数据对该模型进行验证。随后,通过对收敛速度、计算负担及抗干扰能力的综合分析,从三种广泛应用的观测器——卢恩伯格观测器(Luenberger Observer, LO)、扩展卡尔曼滤波观测器(Extended Kalman Filter Observer, EKFO)和滑模观测器(Sliding Mode Observer, SMO)中确定最适宜的监控算法。比较结果表明,LO具有最佳的整体平衡性。为降低老化效应对温度状态估计的敏感性,该观测器采用实际端电压来计算产热量,而非仅依赖模型预测的电压值。该方法能够计入电阻性退化的影响,从而增强估计的鲁棒性,尽管在严重老化情况下仍需配备专门的健康状态估计算法。所选定的观测器通过硬件在环(Hardware in the Loop, HIL)测试实现了实时验证。
English Abstract
Abstract Battery management systems significantly impact the performance of electric Vertical Take Off and Landing Unmanned Aerial Vehicles (eVTOL UAVs). In UAVs powered by multiple battery packs, optimising energy and power to extend cycle life and flight time requires monitoring of state of charge and temperature with a limited number of sensors. To achieve this, the battery pack electro-thermal model is first identified using a dedicated test and validated with experimental data from a current load profile based on a flight mission simulation of the reference UAV. A comprehensive analysis based on convergence speed, computational burden, and disturbance rejection is then conducted to determine the most suitable monitoring algorithm among three widely used observers: the Luenberger Observer (LO), Extended Kalman Filter Observer (EKFO), and Sliding Mode Observer (SMO). The comparison shows that the LO offers the best balance. To mitigate ageing sensitivity in state of temperature estimation, the observer uses the actual terminal voltage to compute heat generation rather than relying solely on model-predicted voltage. This accounts for resistive degradation and enhances robustness, though severe ageing needs a dedicated state of health estimator. The selected observer is validated in real time through a Hardware in the Loop test.
S
SunView 深度解读
该电池包观测器算法研究对阳光电源储能系统ST系列PCS及PowerTitan产品具有重要参考价值。文中Luenberger观测器在计算负荷与收敛速度间的平衡优势,可应用于我司BMS优化,减少温度传感器数量降低成本。其利用实际端电压计算产热以补偿老化影响的策略,可增强ESS系统SOC/SOT估算鲁棒性,提升电池全生命周期管理能力。HIL实时验证方法亦可借鉴用于我司储能控制器开发流程,缩短产品迭代周期。