← 返回
AM-MFF:一种基于注意力机制的多特征融合框架用于鲁棒且可解释的锂离子电池健康状态估计
AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation
| 作者 | Si-Zhe Chen · Jing Liu · Haoliang Yuan · Yibin Tao · Fangyuan Xu · Ling Yang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 电池管理系统BMS SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Improved SOH estimation performance by exploiting inter-feature relationships. |
语言:
中文摘要
健康状态(SOH)是电池管理系统(BMS)中的一个关键参数。利用多种数据源可有效提升端到端SOH估计的性能。然而,现有的基于多维特征的方法未能充分挖掘不同数据源之间的内在关联。同时,大多数方法缺乏可解释性,并忽视了噪声带来的不利影响。本研究提出了一种基于注意力机制的多特征融合框架(AM-MFF),以实现鲁棒且可解释的SOH估计。AM-MFF结合了卷积神经网络(CNN)和注意力机制(AM)的优势,能够高效提取并融合健康特征,从而全面感知电池老化信息。该框架将两个运行阶段的数据作为输入,并通过两个独立的CNN模块自动提取其特征。该设计使AM-MFF能够克服不同输入之间数据分布和噪声水平的差异。随后,采用基于注意力机制的特征融合(AMFF)模块显式地捕捉特征间的内在关系,促进高效的多特征融合。AMFF模块生成的注意力分数揭示了每个输入对SOH估计的贡献程度。在130个电池单元上的实验结果表明,所提出的AM-MFF在准确性、稳定性和抗噪能力方面优于现有的单输入及基于多维特征的模型。即使在数据含有噪声或某一输入的估计失效的情况下,AM-MFF仍能保持优异的SOH估计性能。可解释性分析结果阐明了AM-MFF卓越性能背后的机理,并通过结合注意力分数与电池老化知识识别出模型异常的原因。
English Abstract
Abstract State of health (SOH) is a crucial parameter in a battery management system (BMS). Using multiple sources of data effectively improves the end-to-end SOH estimation performance. However, existing multidimensional feature-based methods fail to fully utilise the intrinsic relationships between multiple sources of data. Meanwhile, most of these methods are not interpretable and overlook the detrimental effects of noise. This study proposes a multi-feature fusion framework based on attention mechanism (AM-MFF) to achieve a robust and interpretable SOH estimation. The AM-MFF integrates the benefits of convolutional neural networks (CNNs) and attention mechanism (AM) to efficiently extract and fuse health features, achieving a comprehensive perception of ageing information. The data from two operational stages are used as inputs and their features are automatically extracted using two independent CNN modules. This design of the AM-MFF overcomes the differences in data distribution and noise levels across inputs. Subsequently, an AM-based feature fusion (AMFF) module is adopted to explicitly capture the intrinsic relationship between features, facilitating efficient multi-feature fusion. The attention scores from the AMFF module elucidate the contributions of each input to the SOH estimation. The experimental results on 130 cells demonstrated the superiority of the proposed AM-MFF over existing single-input and multidimensional feature-based models in terms of accuracy, stability, and noise immunity . The AM-MFF maintained excellent SOH estimation performance even when the data was noisy or the estimation of an input failed. The interpretability results elucidated the rationale behind the excellent performance of the AM-MFF. The reasons for the model anomalies were identified by combining attention scores with battery ageing knowledge.
S
SunView 深度解读
该AM-MFF锂电池SOH估算框架对阳光电源储能系统具有重要应用价值。其多特征融合与注意力机制可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,提升电池健康状态预测精度和抗噪性能。多输入容错设计确保单传感器故障时系统仍可靠运行,符合大规模储能安全需求。注意力分数的可解释性有助于iSolarCloud平台实现预测性维护,提前识别异常电芯。该技术同样适用于充电桩产品的电池诊断功能,可与SiC功率器件协同优化充电策略,延长电池寿命并提升系统整体可靠性。