← 返回
基于物理的锂离子电池电化学模型参数辨识及其双种群优化方法
Physics-based parameter identification of an electrochemical model for lithium-ion batteries with two-population optimization method
| 作者 | Aina Tian · Kailang Dong · Xiao-Guang Yang · Yuqin Wang · Luyao He · Yang Gao · Jiuchun Jiang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 378 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 电池管理系统BMS SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Perform a multi-category multi-condition parameter sensitivity analysis. |
语言:
中文摘要
摘要 伪二维(P2D)模型因其基于物理原理的高精度,在电池管理系统中展现出日益广阔的应用前景。然而,由于难以准确辨识多个参数,且常出现求解不收敛的问题,限制了其实际应用效果。传统的数据驱动型P2D模型参数辨识方法虽然先进,但通常需要大量数据,且缺乏必要的物理机理洞察,容易导致过拟合。为应对上述挑战,本研究首先开展参数敏感性分析,以确定各类参数辨识的最佳条件;进而提出一种双种群多目标优化算法,高效地筛选出非劣解参数集。该算法的独特之处在于引入非收敛种群,以增强狼群种群的更新过程,从而提升参数辨识的有效性与可靠性。最后,结合物理知识提出一种解的选择策略,实现了对P2D模型23个参数的精确辨识。本文开展了数值验证与实验验证,通过对比辨识所得参数值与参考参数值之间的平均百分比误差,验证了所提出的双种群多目标优化算法及参数辨识策略的有效性。在不同工况下的实验验证结果表明,电压预测的均方根误差显著降低;特别是在动态工况下,所有误差均低于9 mV,充分证明了该方法在电池电压预测中的高精度性能。
English Abstract
Abstract Pseudo-two-dimensional (P2D) models are increasingly promising for battery management systems due to their high accuracy, rooted in physical principles. However, their efficacy is hindered by the challenge of accurately identifying multiple parameters, and they often occur non-convergence. Traditional data-driven methods for parameter identification in P2D models, while advanced, are data-intensive and lack essential physical insights, which may lead overfitting. To address these challenges, this study firstly conducts parameter sensitivity analysis to determine the optimal conditions for identifying various parameter types. We then introduce a two-population multi-objective optimization algorithm to efficiently isolate a non-dominated parameter set. This algorithm uniquely incorporates non-convergent populations to enhance the update process of the wolf population, boosting both the effectiveness and reliability of parameter identification. Finally, the solution selection strategy is proposed by utilizing the physical knowledge to accurately identifies 23 parameters of the P2D model. The numerical validation and experimental validation are conducted. The the average percentage error between the identified parameter values and the reference parameter values are compared and verified the effectiveness of two-population multi-objective optimization algorithm and the identification strategy. Experimental validation under different operating conditions demonstrates a significant reduction in the root mean square error . Especially in dynamic operating conditions, the errors are all under 9 mV, affirming the method's precision in battery voltage prediction.
S
SunView 深度解读
该P2D模型参数辨识技术对阳光电源储能系统具有重要价值。通过双种群优化算法精确识别23个电池参数,可显著提升ST系列PCS和PowerTitan储能系统的BMS精度,动态工况下电压预测误差控制在9mV以内。该物理驱动方法可增强iSolarCloud平台的电池健康状态评估和预测性维护能力,避免纯数据驱动的过拟合问题。技术可应用于储能系统全生命周期管理,优化充放电策略,提升系统安全性与经济性,支撑阳光电源储能产品的智能化升级。