← 返回
基于物理信息神经网络的锂离子电池健康状态、剩余使用寿命与短期退化路径联合估计
Physics-informed neural network for co-estimation of state of health, remaining useful life, and short-term degradation path in Lithium-ion batteries
| 作者 | Li Yanga · Mingjian Heab · Yatao Ren · Baohai Gao · Hong Qiab |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 398 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | SiC器件 可靠性分析 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A gated multi-task framework is developed for SOH RUL and S-DP prediction. |
语言:
中文摘要
摘要 锂离子电池由于各种内部和外部因素会随时间逐渐退化,这种退化带来了显著的安全性和可靠性风险,凸显了电池健康管理作为关键研究领域的重要性。然而,当前仍面临一个重大挑战,即开发一种通用的健康管理方法,以适应不同的电池材料、工作环境以及多样化的任务需求。为应对这一问题,本文提出了一种新颖的多任务健康管理方法,该方法将多任务处理框架与物理信息神经网络相结合。通过共享参数与任务特定参数的协同设计,并结合基于物理规律的特征提取机制,该方法高效地整合了健康状态估计、剩余使用寿命预测以及短期退化路径预测三项任务。具体而言,该方法采集恒压充电阶段前后电压与电流数据,并采用改进的Transformer模型提取时序信息;随后引入自适应加权方法,有效融合各任务的损失函数。实验结果表明,健康状态(SOH)估计的平均绝对百分比误差(MAPE)为0.75%,短期退化路径(S-DP)预测的归一化偏差约为0.01,剩余使用寿命(RUL)预测的平均绝对误差(MAE)为104个循环。模型对比实验、训练样本量的敏感性分析以及迁移学习实验均表明,所提出的框架不仅显著提升了预测精度,而且展现出强大的泛化能力与实际应用潜力。本研究为推动电池管理技术的发展提供了新的研究视角。
English Abstract
Abstract Lithium-ion batteries gradually degrade over time due to various internal and external factors. This degradation introduces significant safety and reliability risks, highlighting the importance of battery health management as a critical area of research. However, a major challenge remains to develop a universal health management approach that accommodates various battery materials, operating environments, and diverse tasks. To address this, we present a novel multi-task health management approach that combines a multi-task processing framework with a physics-informed neural network . By leveraging the co-design of shared and task-specific parameters alongside physics-informed feature extraction, the approach efficiently integrates the tasks of state of health estimation, remaining useful life prediction, and short-term degradation path forecasting. Specifically, the method captures voltage and current data before and after the constant voltage charging phase, and employs an improved transformer model to extract temporal information. An adaptive weighting method is then applied to integrate the task losses effectively. Experimental results demonstrate that the mean absolute percentage error (MAPE) of state of health (SOH) estimation is 0.75 %, the normalized deviation of short-term degradation path (S-DP) prediction is approximately 0.01, and the mean absolute error (MAE) of remaining useful life (RUL) prediction is 104 cycles. Model comparative experiments , sensitivity analyses of the training sample size, and transfer learning demonstrate that the proposed framework not only substantially improves prediction accuracy but also showcases strong generalization capabilities and practical applicability. This provides a novel research perspective for advancing battery management technologies.
S
SunView 深度解读
该物理信息神经网络多任务学习框架对阳光电源储能系统具有重要应用价值。可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,实现SOH估算(误差0.75%)、RUL预测(误差104循环)和短期退化路径预测的协同管理。其基于恒压充电阶段电压电流数据的特征提取方法,与阳光电源iSolarCloud平台的预测性维护功能高度契合,可显著提升储能电站全生命周期管理能力。迁移学习特性支持跨化学体系和工况的快速部署,为EV充电桩电池健康诊断提供技术储备,助力构建更智能的能源管理生态。