← 返回
储能系统技术 SiC器件 多物理场耦合 深度学习 ★ 5.0

基于神经网络前馈算法的SOEC系统热电双控策略

A thermo-electrical dual control strategy for SOEC system based on a neural network feedforward algorithm

作者 Biaowu Lua · Shaozhuo Niub · Yuxuan Feic · Ang Lia · Zhen Zhang · Chen Zhang · Lei Zhuc · Zhen Huang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 储能系统技术
技术标签 SiC器件 多物理场耦合 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A control-oriented dynamic model of the SOEC system is developed.
语言:

中文摘要

摘要 固体氧化物电解池(SOEC)通过共电解技术为将可再生能源转化为合成气提供了有前景的途径,实现了高效的能量存储。然而,可再生能源固有的波动性,以及SOEC系统内部多物理场和组件之间的复杂耦合作用,给实现快速动态调节带来了重大挑战。本文建立了包含蒸发器、电加热器、换热器和SOEC电堆在内的SOEC系统综合模型。通过详细的多时间尺度特性分析发现,燃料流量在控制电堆温度和电压方面具有优势。随后,对比了基本燃料流量控制(FFC)、空气流量控制(AFC)和恒定转化率控制(CCRC)对关键性能的影响。结果表明,尽管FFC能够保持较高的系统效率,并在调节电堆温度方面表现出显著优势,但在调节过程中也会引起较大的电压波动。为解决这一问题,本文提出了一种基于Levenberg-Marquardt神经网络的前馈控制策略,旨在通过对燃料流量的精确调控,提升SOEC系统在不同时间尺度下的整体瞬态性能。阶跃测试表明,与传统的FFC相比,所提出的控制算法不仅进一步增强了温度调节能力,还将电压波动从0.95 V降低至0.23 V,从而实现了SOEC系统的热-电双重控制。该方法在实际光伏电流条件下的有效性也得到了进一步验证。

English Abstract

Abstract Solid oxide electrolysis cells (SOECs) offer a promising approach to converting renewable energy into syngas through co-electrolysis, enabling efficient energy storage. However, the inherent variability of renewable energy sources, combined with the complex interactions among multiphysics fields and components within the SOEC system, poses a significant challenge to achieving rapid dynamic regulation. This paper develops a comprehensive model of the SOEC system, including the evaporator, electric heater, heat exchanger, and SOEC stack. Through a detailed multi-time-scale characteristic analysis, it is found that the fuel flow rate exhibits advantages in controlling the stack temperature and voltage. Then the effects of basic fuel flow control (FFC), air flow control (AFC) and constant conversion rate control (CCRC) on key performance are compared. The results indicate that while FFC maintains high system efficiency and demonstrates significant advantages in regulating stack temperature, it also induces substantial voltage fluctuations during the adjustment process. To address this issue, a feedforward control strategy based on a Levenberg-Marquardt neural network is proposed, aiming to improve the SOEC's overall transient performance across time scales through precise regulation of the fuel flow rate. Step tests indicate that, compared with conventional FFC, the proposed control algorithm not only further enhances temperature regulation but also reduces voltage fluctuations from 0.95 V to 0.23 V, thereby achieving dual thermo-electrical control for the SOEC system. The effectiveness of this approach is further validated under actual photovoltaic current conditions.
S

SunView 深度解读

该SOEC双控策略对阳光电源储能系统具有重要借鉴价值。论文提出的神经网络前馈控制算法可应用于ST系列PCS的多物理场协同控制,特别是在光伏波动场景下实现电压稳定与温度管理的双重优化。其多时间尺度特性分析方法可用于PowerTitan储能系统的动态响应优化,将电压波动降低75%的控制思路可迁移至SiC功率器件的热电耦合管理。该深度学习算法与iSolarCloud平台的预测性维护技术结合,有望提升光储一体化系统在可再生能源波动工况下的鲁棒性与转换效率,为GFM控制策略提供智能前馈补偿方案。