← 返回

基于物理超参数优化联邦多层深度学习模型的物联网入侵检测

Physics-Based HPO Federated Multi-Layered DL Model for IDS in IoT Networks

作者 Chirag Jitendra Chandnani · Vedik Agarwal · Shlok Chetan Kulkarni · Aditya Aren · D. Geraldine Bessie Amali · Kathiravan Srinivasan
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 多物理场耦合 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 物联网 入侵检测 联邦学习 Fed - MLDL模型 FedRIME优化
语言:

中文摘要

物联网正以其无处不在重塑我们生活。从健身手表到飞机的IoT设备无处不在性质突然上升导致网络攻击激增。AI驱动入侵检测系统IDS近期被用于对抗IoT环境中这一攻击激增。然而,现有解决方案缺乏分布式去中心化环境训练优化。去中心化环境训练模型的流行解决方案是联邦学习,多个客户端模型协作训练全局模型同时保持各客户端数据去中心化和私密。然而这存在各客户端数据泛化能力差的问题。本研究提出新型联邦多层深度学习Fed-MLDL模型,在分布式联邦学习环境中采用基于物理的超参数优化技术FedRIME用于CICIoT23等数据集入侵检测。FedRIME通过根据每个客户端微调模型超参数确保所有客户端数据良好泛化。实验结果表明,Fed-MLDL与Fed-RIME优化在独立同分布数据集上展示最高准确率,CICIoT23达99.2%等。此外,所提Fed-MLDL与Fed-RIME优化在收敛速度、稳定性和客户端特定定制方面展示显著改进。该研究观察到深度学习模型与HPO技术耦合导致更快收敛仅需10-15通信轮。

English Abstract

The Internet of Things (IoT) is reshaping our lives with its omnipresence. The sudden uptick in the ubiquitous nature of IoT devices ranging from fitness watches to aircraft has led to a surge of cyber-attacks. Artificial Intelligence powered Intrusion Detection Systems (IDS) are being used recently to combat this increasing surge of attacks in the IoT environment. However, existing solutions lack optimization for training in distributed decentralized environments. A popular solution for training a model in a decentralized environment is Federated Learning. Multiple client models collaboratively train a global model while keeping the individual client’s data decentralized and private. This, however, suffers from poor generalization of the individual client data. This work proposes a new Federated Multi-Layered Deep-Learning (Fed-MLDL) model that employs physics-based hyperparameter optimization (HPO) technique FedRIME in a distributed federated learning environment for intrusion detection on the CICIoT23, CICIoT22, ToN_IoT, Edge_IIoT and, IoT-23 datasets. FedRIME ensures good generalization for all clients’ data by finetuning the model’s hyperparameters according to each client. The experimental results indicate that the Fed-MLDL with Fed-RIME optimization exhibits the highest accuracy for independent and identically distributed datasets with the scores being 99.2% with CICIoT23, 98.1% with CICIoT22, 98.2% with ToN_IoT, 98.5% with Edge_IIoTset and, 98.6% with IoT-23 dataset respectively. Further, the proposed Fed-MLDL with Fed-RIME optimization has demonstrated a significant improvement in the speed of convergence, stability, and client specific customization in federated learning. The study provides a comprehensive comparison with the most recent physics based HPO techniques. This study observes that coupling a Deep-Learning model with HPO techniques results in a much faster convergence requiring only 10-15 communication rounds. The proposed Fed-MLDL with Fed-RIME optimization outperforms existing state-of-the-art models on the CIC-IoT23 dataset.
S

SunView 深度解读

该联邦学习入侵检测技术对阳光电源分布式能源物联网安全具有重要应用。阳光管理全球数百万台光伏逆变器和储能设备,设备分布式部署和数据隐私保护是关键需求。该Fed-MLDL模型可应用于阳光iSolarCloud平台的分布式安全防护,在保护各电站数据隐私的同时实现全局入侵检测模型训练。在工商业储能场景下,该联邦学习方法可聚合多个电站的威胁情报,提升整体安全防护能力。该FedRIME超参数优化技术可针对不同电站特点定制检测模型,提升准确率至99%以上。结合阳光设备边缘计算能力和云端协同,该技术可构建高效隐私保护的分布式安全体系,保护能源物联网安全。