找到 3 条结果
面向多方风电功率预测的隐私保护自适应联邦深度学习
Privacy-Preserving and Adaptive Federated Deep Learning for Multiparty Wind Power Forecasting
Yi Wang · Qinglai Guo · IEEE Transactions on Industry Applications · 2024年7月
先进的预测工具对于现代电力系统减轻可再生能源的不确定性至关重要。尽管数据驱动的方法在风电预测方面取得了显著进展,但数据可用性有限阻碍了其有效性。严格的数据监管规则和竞争利益使得相邻风电场无法整合数据集以学习更准确的预测模型。为应对这一挑战,我们提出了 SecFedAProx - LSTM,这是一种结合深度学习模型和隐私保护自适应联邦学习框架的新型风电预测方法。该方法动态调整局部优化目标,以在全局收敛性能和探索个体特征之间取得平衡,从而解决统计异质性问题。此外,它采用去中心化多客户端功能加密进行安...
解读: 从阳光电源的业务视角来看,本文提出的隐私保护自适应联邦学习风电预测方法具有重要的战略参考价值。虽然研究聚焦于风电场景,但其核心技术框架可直接迁移至光伏功率预测、储能系统优化及多能源协同管理等阳光电源的核心业务领域。 该技术的核心价值在于突破了数据孤岛困境。当前阳光电源在全球部署了大量光伏电站和储能...
ZTFed-MAS2S:一种用于风电数据填补的可验证隐私与信任感知聚合零信任联邦学习框架
ZTFed-MAS2S: A Zero-Trust Federated Learning Framework With Verifiable Privacy and Trust-Aware Aggregation for Wind Power Data Imputation
Yang Li · Hanjie Wang · Yuanzheng Li · Jiazheng Li 等5人 · IEEE Transactions on Industrial Informatics · 2025年10月
由于传感器故障和边缘站点传输不稳定,风电数据常常存在缺失值。虽然联邦学习能够在不共享原始数据的情况下实现隐私保护协作,但在参数交换过程中,它仍然容易受到异常更新和隐私泄露的影响。在开放的工业环境中,这些挑战更加严峻,因此需要零信任(ZT)机制,即不默认信任任何参与者。为应对这些挑战,本文提出了ZTFed - MAS2S,这是一个集成了基于多头注意力的序列到序列插补模型的零信任联邦学习框架。ZTFed将可验证差分隐私与非交互式零知识证明以及机密性和完整性验证机制相结合,以确保可验证的隐私保护和安全...
解读: 从阳光电源的业务视角来看,这项零信任联邦学习框架虽然聚焦于风电数据补全,但其核心技术对我司在新能源数据管理和多场景协同方面具有重要借鉴价值。 在技术价值层面,该框架解决的数据缺失问题在光伏电站和储能系统中同样普遍存在。我司遍布全球的逆变器和储能设备常因通信不稳定、传感器故障导致数据缺失,影响功率预...
基于物理超参数优化联邦多层深度学习模型的物联网入侵检测
Physics-Based HPO Federated Multi-Layered DL Model for IDS in IoT Networks
Chirag Jitendra Chandnani · Vedik Agarwal · Shlok Chetan Kulkarni · Aditya Aren 等6人 · IEEE Access · 2025年1月
物联网正以其无处不在重塑我们生活。从健身手表到飞机的IoT设备无处不在性质突然上升导致网络攻击激增。AI驱动入侵检测系统IDS近期被用于对抗IoT环境中这一攻击激增。然而,现有解决方案缺乏分布式去中心化环境训练优化。去中心化环境训练模型的流行解决方案是联邦学习,多个客户端模型协作训练全局模型同时保持各客户端数据去中心化和私密。然而这存在各客户端数据泛化能力差的问题。本研究提出新型联邦多层深度学习Fed-MLDL模型,在分布式联邦学习环境中采用基于物理的超参数优化技术FedRIME用于CICIoT...
解读: 该联邦学习入侵检测技术对阳光电源分布式能源物联网安全具有重要应用。阳光管理全球数百万台光伏逆变器和储能设备,设备分布式部署和数据隐私保护是关键需求。该Fed-MLDL模型可应用于阳光iSolarCloud平台的分布式安全防护,在保护各电站数据隐私的同时实现全局入侵检测模型训练。在工商业储能场景下,该...