← 返回
一种考虑单体电池运行状态的锂离子电池健康状态贝叶斯迁移学习评估框架
A Bayesian transfer learning framework for assessing health status of Lithium-ion batteries considering individual battery operating states
| 作者 | Jiarui Zhang · Lei Mao · Zhongyong Liu · Kun Yu · Zhiyong Hu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 382 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Individual battery operating states are considered in the modeling of the SOH prediction framework. |
语言:
中文摘要
摘要 锂离子电池(LIBs)健康状态(SOH)的快速准确评估对于实现高效的电池监测与管理具有重要意义。LIBs的退化是一个复杂的过程,每一块电池的退化路径均具有独特性,受到内部和外部多种因素共同影响。然而,现有方法通常将每块电池视为独立个体处理,未能充分挖掘和利用各单体电池的独特特征。为克服这一局限性,本研究提出了一种贝叶斯迁移学习框架,用于建模锂离子电池特有的退化过程,从而完成对SOH的评估。具体而言,构建了一个混合效应模型(MEM)以描述电池健康状态的退化过程,该模型能够捕捉不同电池之间的异质性。采用B样条基函数来映射运行因素与混合效应之间的关系。随后,通过建模协方差矩阵,利用各电池之间的相似性实现信息传递。为适应不同的实际应用场景,本文基于贝叶斯定理提出了三种参数更新策略,以应对在不同可用信息条件下实际应用中的LIB SOH估计问题。此外,通过两个数据集验证了所提方法的通用性,结果表明该方法适用于多种类型的电池,并可同时应用于循环老化和日历老化的场景。
English Abstract
Abstract The rapid and accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is of key importance for efficient battery monitoring and management. The degradation of LIBs is a complex process, with each LIB exhibiting a unique degradation path influenced by a combination of internal and external factors. However, the existing methods typically treat each LIB as a standalone entity, failing to fully leverage the unique characteristics of each individual. To address this limitation, a Bayesian transfer learning framework is proposed in this study to model the distinct LIB degradation process in order to complete the assessment of SOH. Specifically, a mixed-effect model (MEM) is constructed to describe the process of degradation of LIB health states, where the heterogeneity among each LIB can be captured. The B-spline basis functions are occupied to map the relationship between the operational factors and mixed effects. Subsequently, a covariance matrix is modeled to realize information transmission by the similarity between each LIB. To adapt to different practical application scenarios, three parameter updating strategies based on Bayes' theorem are proposed for LIB SOH estimation under practical applications with various available information. Furthermore, two datasets are used to illustrate the method's versatility, as it is applicable to diverse battery types and to both cycle and calendar ageing.
S
SunView 深度解读
该贝叶斯迁移学习框架对阳光电源ST系列储能变流器及PowerTitan储能系统的电池管理具有重要价值。混合效应模型可捕捉单体电池差异性,实现精准SOH评估,优化BMS策略。三种参数更新策略适配不同应用场景,可提升iSolarCloud平台预测性维护能力。该方法兼容循环老化与日历老化,适用于大规模储能电站全生命周期管理,降低运维成本,延长系统寿命,增强电网侧及工商业储能解决方案竞争力。