← 返回
基于机器学习的高压输电线路电晕损耗预测
Forecasting Corona Losses on High Voltage Transmission Lines Using Machine Learning
| 作者 | Pradeep Kumar Gupta · Kaur Tuttelberg · Jako Kilter |
| 期刊 | IEEE Transactions on Power Delivery |
| 出版日期 | 2025年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 机器学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 机器学习 电晕损耗预测 气象数据 预测模型 输电系统运营商 |
语言:
中文摘要
本文研究了机器学习在高压架空输电线路电晕损耗预测中的应用。由于气象条件与电晕损耗之间关系高度复杂,准确预测具有挑战性。模型构建采用了沿线多个气象站两年的气象数据及线路两端的PMU测量数据,结合XGBoost和集成随机森林(ERF)回归算法,考虑多变量气象输入。研究设计了四种预测场景:不同时间步长预测、季节性预测、多线路联合预测以及特征缩减对预测精度的影响。最优模型在98%的数据点上误差控制在±0.5 kW/km以内,均方根误差为0.16 kW/km。精确预测有助于提升系统可靠性并降低运行成本。
English Abstract
This paper presents the application of machine learning in forecasting corona losses on high voltage overhead transmission lines. Forecasting of corona losses is challenging due to a highly-complex relationship between weather conditions and corona losses. To develop a forecasting model for corona losses, two years of weather data from different weather stations along the transmission lines and respective PMU measurement data from both ends of the line were considered. Machine learning algorithm-based forecasting models, e.g., XGBoost and ensemble random forest (ERF) regression models with multiple weather inputs, were used. The forecasting scenario was divided into four frames, i.e., different time-step based forecasting, seasonal forecasting, combined transmission lines corona losses forecasting for larger grid networks, and the effect of reduced features (weather parameters) on the accuracy of predicted corona losses. The best case performance was an error in the range of 0.5 kW/km for 98% of the data points and a root mean squared error of 0.16 kW/km. Precise forecasting of corona losses can assist Transmission System Operators in cost savings and increasing the reliability of the power system.
S
SunView 深度解读
该电晕损耗预测技术对阳光电源PowerTitan大型储能系统和iSolarCloud智能运维平台具有重要应用价值。在高压并网场景中,储能系统需精确评估输电线路损耗以优化充放电策略和能量管理。研究中的XGBoost多变量气象预测模型(RMSE 0.16 kW/km)可集成至ST系列储能变流器的EMS能量管理系统,结合PMU实时测量数据实现动态损耗补偿。特别是季节性预测和多线路联合建模方法,可应用于iSolarCloud平台的预测性维护模块,提升大规模新能源电站并网可靠性,降低输电损耗成本。该机器学习框架也可扩展至光伏逆变器MPPT算法优化和充电桩负荷预测场景。