找到 31 条结果 · Applied Energy
基于边缘计算的考虑开关操作序列的主动配电网分布式供电恢复方法
Edge computing-based distributed power restoration for active distribution networks considering switching sequence
Hao Yua · Zhicheng Zhang · Peng Lia · Haoran Jia 等8人 · Applied Energy · 2025年1月 · Vol.401
摘要 随着边缘计算技术在配电网中的融合应用,分布式供电恢复已成为提高应对停电故障响应效率的一种有前景的替代方案。然而,由于开关与分布式电源(DGs)之间存在复杂的顺序协调关系,分布式供电恢复的实际实施仍面临挑战。本文提出了一种考虑开关操作序列的分布式供电恢复方法。该方法通过将目标网络状态求解与从初始状态到目标状态的过渡策略分别求解,有效解决了顺序供电恢复问题,从而降低了整体计算复杂度。为此,设计了一种改进的交替方向乘子法(ADMM)算法以提升求解效率。所提出的方法可用于在线生成供电恢复策略,并可...
解读: 该边缘计算分布式恢复技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。论文提出的改进ADMM算法可集成至iSolarCloud平台,实现配电网故障快速响应。其开关序列协调机制可优化储能PCS与SG系列光伏逆变器的孤岛并网切换策略,缩短供电恢复时间。分布式架构与阳光GFM/G...
大型地下氢气储存的比较技术经济分析
Comparative techno-economic analysis of large-scale underground hydrogen storage
Yashuai Huang · Xilin Shi · Shijie Zhuc · Xinxing Wei 等9人 · Applied Energy · 2025年1月 · Vol.400
摘要 氢气作为一种兼具储能介质、原料和燃料多重角色的能源载体,目前受到广泛关注。地下氢气储存(UHS)被认为是大规模氢气储存的一种安全、经济且高效的解决方案,然而相关技术经济研究仍较为有限。本文基于工程案例,建立了针对枯竭气藏(DGR)、盐穴(SC)和衬砌岩洞(LRC)三种储氢方式的氢气储存平准化成本(LCOHS)计算模型。研究重点分析了氢气储存规模及注采频率对LCOHS的影响,旨在从经济角度为能源管理与政策制定提供数据支持。结果表明:(1)当储存容量为10^7 kg、每年完成一次注采循环时,盐...
解读: 该地下储氢技术研究对阳光电源储能系统具有战略参考价值。研究表明盐穴和岩洞储氢在高频注入-提取场景下成本优势显著(0.31-0.38美元/kg),这与我司ST系列PCS和PowerTitan储能系统的快速响应特性高度契合。可探索将地下储氢与电化学储能形成互补:电化学储能负责高频调节,地下储氢承担季节性...
一种考虑尾流传播速度与偏转的新型动态尾流模型用于风速和发电功率预测
A novel dynamic wake model for prediction of wind speed and power production considering wake propagation velocity and deflection
Yun-Peng Song · Takeshi Ishihar · Applied Energy · 2025年1月 · Vol.400
摘要 本研究提出了一种新型动态尾流模型,通过引入新的尾流传播速度模型和尾流偏转模型,用于预测实时风速和发电功率,并通过数值模拟和风洞试验进行了验证。首先,采用非定常雷诺平均纳维-斯托克斯(URANS)模型对动态尾流模型进行评估,并以相位平均的大涡模拟(LES)结果进行验证。基于考虑多种运行条件和来流条件的URANS模拟结果,提出了尾流传播速度模型。研究发现,风力机尾流的传播速度在近尾流区域小于环境风速的一半,并在远尾流区域渐近趋近于环境风速的约0.65倍。随后,针对偏航状态下的风力机,从动量守恒...
解读: 该动态尾流模型对阳光电源风电变流器及智能运维系统具有重要价值。通过精准预测风速变化和功率波动(NRMSE降至1.89%),可优化SG系列风电变流器的MPPT算法和功率跟踪策略。尾流传播速度模型(0.65倍环境风速)可集成至iSolarCloud平台,实现风场实时功率预测和偏航控制优化,提升发电效率。...
双面光伏组件在局部遮阴条件下复合发电模型的开发
Development of a compound power generation model for bifacial photovoltaic modules under partial shading conditions
Qiangzhi Zhang · Yimo Luo · Tao Mac · Shuhao Wanga 等8人 · Applied Energy · 2025年1月 · Vol.400
摘要 双面光伏(bPV)组件由于自遮挡、相互遮挡以及外部遮挡,导致其正面和背面接收到的太阳辐照度分布不均,从而影响其性能与可靠性。因此,在局部遮阴条件(PSC)下建立精确的功率模型至关重要。现有的bPV组件发电模型通常基于双面因子,未能考虑被遮挡与未被遮挡太阳电池区域之间的电流失配问题,以及正背面电气性能的动态变化,这两方面因素均会导致发电量的高估。为克服上述局限性,本文提出了一种新型复合发电模型,该模型构建了双电流源子模型(DCSM)以考虑太阳电池的失配效应,并采用并联等效电路子模型(PECM...
解读: 该双面组件复合功率模型对阳光电源SG系列光伏逆变器的MPPT优化具有重要价值。传统模型在遮挡工况下误差超60%,新模型通过双电流源子模型和并联等效电路精准捕捉电池失配与动态特性,误差降至5%以内。可应用于iSolarCloud平台的发电预测算法,优化1500V系统在复杂遮挡场景下的多路MPPT策略,...
一种融合虚拟储能与氢气废热回收的南极无人观测站两阶段分布鲁棒低碳运行方法
A two-stage distributionally robust low-carbon operation method for antarctic unmanned observation station integrating virtual energy storage and hydrogen waste heat recovery
Longwen Changab1 · Zening Liab · Xingtao Tianc · Jia Suc 等10人 · Applied Energy · 2025年1月 · Vol.400
摘要 为降低南极无人观测站(UOS)运行过程中的碳排放,本文提出了一种融合虚拟储能(VES)与氢气废热回收(HWHR)的两阶段分布鲁棒低碳运行方法。首先,针对具有复合围护结构的UOS,构建了包含风能、太阳能、氢能及电池储能的多能互补模型;该模型考虑了风力机结冰与光伏组件积雪覆盖的影响,并引入了氢能源系统与热泵(HPs)之间的电热耦合关系。其次,基于不精确狄利克雷模型(IDM)构建模糊集,建立了在特定置信水平下刻画南极地区风电与光伏发电(WP)出力以及室外温度不确定性的不确定性集合。进一步地,提出...
解读: 该南极无人站低碳运行技术对阳光电源极端环境能源解决方案具有重要价值。研究中的风光氢储多能互补架构可直接应用于ST系列储能变流器与SG光伏逆变器的协同控制策略,特别是光伏积雪、风机结冰等极端工况建模为1500V系统在高寒地区的MPPT优化提供参考。两阶段分布鲁棒优化方法可集成至iSolarCloud平...
基于功率型与能量型储能的混合储能系统优化调度与性能评估
Optimized scheduling and performance evaluation of hybrid energy storage systems with power-based and energy-based storage
Jiacheng Guo · Jun Chen · Hao Wuab · Jimin Zengc 等5人 · Applied Energy · 2025年1月 · Vol.395
摘要 能源转型使得混合储能系统(HESS)在工业园区中日益重要。然而,目前仍缺乏系统性的研究来回答为何应在工业园区中实施混合储能系统这一问题。本研究开发了一种集成了超级电容器、锂离子电池、热储罐和冷冻水储冷装置的混合储能系统。提出了一种结合变分模态分解与混合整数线性规划的优化调度方法,该方法充分考虑了功率型储能与能量型储能方式之间的互补特性。从长期效益和不同场景下的短期调度两个角度,对混合储能系统的性能进行了系统性分析。结果表明,与仅采用锂离子电池储能的系统相比,该混合储能系统显著减少了碳排放(...
解读: 该混合储能优化调度技术对阳光电源ST系列PCS及PowerTitan储能系统具有重要应用价值。研究验证了超级电容与锂电池混合配置在工商业场景的经济性(降本5.5%)和减碳效果(减排15.5%),可指导我司PowerTitan方案中功率型与能量型储能的容量配比优化。其基于VMD分解的混合整数线性规划调...
基于深度学习的分布鲁棒联合机会约束配电网光伏承载能力评估
Deep learning-based distributionally robust joint chance constrained distribution networks PV hosting capacity assessment
Zihui Wanga1 · Yanbing Jiaa2 · Xiaoqing Hana3 · Peng Wangb4 等5人 · Applied Energy · 2025年1月 · Vol.394
摘要 随着分布式光伏(PV)在配电网(DNs)中的渗透率不断提高,评估光伏承载能力(PVHC)以确保配电网安全运行变得至关重要。本文提出了一种数据驱动的分布鲁棒联合机会约束(DRJCC)配电网光伏承载能力评估框架。首先,引入基于时空注意力、投影、监督和Transformer架构的生成对抗模块,构建一种增强型时间序列生成对抗网络(ATS-GAN)。该网络通过在联合训练过程中融合监督学习与无监督学习,能够更好地捕捉光伏与负荷功率的时空特征。随后,利用ATS-GAN构建以生成器神经网络所诱导分布为中心...
解读: 该分布鲁棒联合机会约束光伏承载力评估技术对阳光电源SG系列逆变器和ST储能系统的配置优化具有重要价值。论文提出的ATS-GAN时空特征捕捉方法可应用于iSolarCloud平台,提升多点分布式光伏出力预测精度。分布鲁棒优化框架能指导PowerTitan储能系统在配电网中的容量配置,通过联合机会约束降...
基于模型-数据融合方法的锂离子电池储能系统惯性支撑持续功率边界在线估计
Online estimation of inertia-supporting sustaining power boundary of lithium-ion battery energy storage systems based on model-data fusion method
Shaoxin Shi · Qiao Peng · Tianqi Liu · Yunteng Dai 等5人 · Applied Energy · 2025年1月 · Vol.393
摘要 锂离子电池储能系统(BESS)在为电力系统提供惯性支撑方面展现出巨大潜力。然而,如何在实现高效惯性支撑的同时保障电池的安全运行仍面临挑战,这要求对电池的输出边界进行准确估计,尤其是在在线运行条件下。然而,现有的电池输出功率边界评估方法通常忽略了惯性支撑特有的输出特性以及在线应用的需求,从而限制了其准确性与效率。本文提出了一种基于模型-数据融合方法(MDFM)的BESS惯性支撑持续功率边界(SPB)在线估计新方法。首先,开展一系列实验以研究电池在惯性支撑工况下的阻抗特性,并据此构建一种基于负...
解读: 该储能惯量支撑功率边界在线估算技术对阳光电源ST系列PCS及PowerTitan储能系统具有重要应用价值。通过模型-数据融合方法实现锂电池输出边界的实时精准评估,可直接集成至VSG虚拟同步机控制策略中,优化惯量响应过程中的功率调度。负阻抗等效电路模型结合SVM机器学习算法,能有效提升iSolarCl...
通过神经网络方法加速钙钛矿太阳能电池的器件表征
Accelerating device characterization in perovskite solar cells via neural network approach
Xinhai Zhaoab1 · Chaopeng Huangae1 · Erik Birgersson · Nikita Suprun 等11人 · Applied Energy · 2025年1月 · Vol.392
摘要 钙钛矿太阳能电池是下一代高效光伏器件的有力候选者,尤其适合作为叠层结构中的顶部电池。基于物理机制的光电模型,我们采集了十万量级的大数据样本,用于训练神经网络模型,以高效预测器件性能和复合损耗。在数据准备、模型训练和神经网络优化过程中,分别采用了拉丁超立方采样、贝叶斯正则化和贝叶斯优化方法。最优的神经网络模型在预留的测试数据集上实现的均方误差低于4 × 10⁻⁴。神经网络的计算速度比传统光电模型快一千倍以上。因此,器件快速校准可在24秒内完成。显著降低的计算成本使得高效的器件表征、参数研究、...
解读: 该神经网络加速钙钛矿电池表征技术对阳光电源光伏逆变器产品线具有重要借鉴价值。研究采用的深度学习方法将器件仿真速度提升千倍以上,可应用于SG系列逆变器的MPPT算法优化和iSolarCloud平台的预测性维护功能。通过贝叶斯优化和敏感性分析快速标定器件参数的思路,可迁移至SiC/GaN功率器件的损耗分...
水库式储热系统在数据中心冷却系统中的技术经济性能
Techno-economic performance of reservoir thermal energy storage for data center cooling system
Hyunjun Oh · Wencheng Jin · Peng Peng · Jeffrey A.Winick 等12人 · Applied Energy · 2025年1月 · Vol.391
摘要 数据中心内的电子设备在运行过程中会产生热量,必须通过冷却系统将热量散去,以防止设备过热并维持其最佳性能。随着对数据密集型服务需求的不断增长,用于数据中心冷却系统的电力消耗也日益显著。尽管已有多种技术被开发并集成到数据中心冷却系统中,但目前仍缺乏高效的替代方案。本研究设计了一种水库式热能储存(RTES)系统,该系统可在冬季储存冷能,并在夏季释放以供数据中心冷却使用。随后,我们评估了将RTES与干式冷却器及余热回收技术结合,满足全年5 MW冷却负荷的技术经济性能。结果表明,在20年的使用寿命内...
解读: 该储热技术为数据中心冷却提供了创新思路,对阳光电源储能系统具有重要启示。可将ST系列PCS与热能存储结合,开发冷热电三联供方案:冬季利用光伏余电驱动热泵储冷,夏季释放降低数据中心能耗。技术优势体现在:1)levelized成本仅为传统方案1/3,与PowerTitan储能经济性目标契合;2)年减排1...
揭示钠化石墨负极主导的NFPP/HC软包电池热失控机制
Uncovering Sodiated HC dominated thermal runaway mechanism of NFPP/HC pouch battery
Wei Li · Shini Lin · Honghao Xi · Yuan Qin 等8人 · Applied Energy · 2025年1月 · Vol.391
摘要 钠离子电池(SIBs)因其资源丰富和优异的电化学性能,被认为是大规模储能系统(LSESS)中极具前景的技术。然而,SIBs的安全性鲜有讨论,而热稳定性对其电池应用至关重要,尤其是在LSESS中的应用。本研究揭示了由钠化负极产热主导的Na₃Fe₂(PO₄)(P₂O₇)||硬碳(NFPP/HC)软包电池的热失控机制。基于电池和材料层面的产热分析表明,硬碳(HC)与电解液之间的放热反应在100 °C时即开始发生(NFPP与电解液的放热反应发生在约230 °C),且负极与电解液的反应释放大量热量,...
解读: 该钠离子电池热失控机理研究对阳光电源PowerTitan等大规模储能系统安全设计具有重要参考价值。研究揭示硬碳负极在100°C即开始放热反应,远低于正极材料230°C,且隔膜熔点接近热失控触发温度。这为ST系列PCS的热管理策略优化提供依据:需在电池簇级别加强温度监测,设置更严格的100°C预警阈值...
基于先验知识的大规模超高清光伏板分割数据集增强框架
A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge
Ruiqing Yang · Guojin He · Ranyu Yin · Guizhou Wang 等9人 · Applied Energy · 2025年1月 · Vol.390
摘要 当前大多数提升模型精度的研究主要集中在模型本身的优化上,往往忽视了数据集质量的关键作用,尤其是在遥感大数据背景下。许多关于光伏发电(PV)的大规模提取研究通常仅关注光伏电站边界的粗略勾画,这限制了更深入的下游分析潜力。本文提出了一种针对光伏电站内部光伏板进行细粒度提取的框架,而非仅仅捕捉电站的外部轮廓。通过聚焦于单个光伏板级别的分割,该方法为下游应用(如发电量估算和空间布局优化)提供了更为精确的评估基础。该框架融合了先验知识,以应对地表覆盖、成像条件以及背景干扰所带来的挑战。一种创新的标签...
解读: 该超高分辨率光伏板分割框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。通过面板级精细识别,可显著提升SG系列逆拟器的MPPT优化策略精度,实现组串级故障诊断与发电量评估。数据集质量提升(78%→92%)为预测性维护算法提供可靠训练基础,结合先验知识的标注效率提升75%可加速电站数字...
基于物理信息注意力残差网络的电池智能温度预警模型
Battery intelligent temperature warning model with physically-informed attention residual networks
Xue Ke · Lei Wang · Jun Wang · Anyang Wang 等12人 · Applied Energy · 2025年1月 · Vol.388
摘要 电动汽车的快速发展对锂离子电池的热安全管理提出了更高要求。传统的物理模型需要大量离线参数辨识,在计算效率与模型保真度之间难以平衡;而数据驱动方法虽然精度较高,但缺乏可解释性,且在不同工况下需要大量数据支持。为应对上述挑战,本文提出了一种物理信息引导的注意力残差网络(Physics-Informed Attention Residual Network, PIARN),该模型将改进的非线性双电容模型与热集总模型嵌入到物理引导的循环神经网络框架中,从而提升了模型的可解释性与泛化能力。所设计的残...
解读: 该物理信息引导的电池温度预警技术对阳光电源储能系统具有重要价值。PIARN模型结合物理模型与深度学习,可集成至ST系列PCS和PowerTitan储能系统的BMS热管理模块,实现0.1°C精度的在线温度预测和近100%准确率的热预警。其轻量化物理模型与残差网络架构适合边缘计算部署,可通过iSolar...
一种用于风力涡轮机应用中精确预测三维时空风场的新型频域物理信息神经网络
A novel frequency-domain physics-informed neural network for accurate prediction of 3D spatio-temporal wind fields in wind turbine applications
Shaopeng Li · Xin Li · Yan Jiang · Qingshan Yang 等7人 · Applied Energy · 2025年1月 · Vol.386
摘要 风能是全球关键的清洁能源之一。风力涡轮机的结构安全性和动力响应分析在很大程度上受到其所在位置风速数据可获得性与精度的影响。然而,气象观测站分布稀疏,通常难以获取高分辨率的空间风速数据,因此需要采用条件模拟方法来补充低分辨率的观测数据。本研究针对这一挑战,提出了一种频域物理信息神经网络(FD-PINN),该方法利用频域信息,旨在实现对风力涡轮机三维(3D)时空风场的精准预测。该方法构建了一个深度神经网络,并将其与关键物理模型相结合,包括风谱、风场相干函数以及风速廓线。通过融合这些物理先验知识...
解读: 该频域物理信息神经网络技术对阳光电源风电变流器及新能源场站具有重要价值。通过高精度3D时空风场预测,可优化SG系列风电变流器的功率预测算法和主动抗扰控制策略,提升MPPT效率。结合iSolarCloud平台,该深度学习方法可增强风光储混合电站的预测性维护能力,优化储能系统ST系列PCS的充放电策略。...
基于分布式近端策略优化的输配电网电动汽车与可变能源调度双层求解策略
A bi-level solution strategy based on distributed proximal policy optimization for transmission and distribution network dispatch with EVs and variable energy
Peng Lu · Hanqing Lan · Qiwei Yuan · Zhihao Jiang 等14人 · Applied Energy · 2025年1月 · Vol.384
摘要 将大规模风电与大量电动汽车(EV)负荷接入电力系统,对电网的安全性与经济运行带来显著影响,带来了诸如电网调度指令频繁变动、电动汽车充放电行为无序以及网络损耗增加等一系列挑战。为此,本文建立了一种考虑大规模电动汽车的输配电网双层优化调度策略模型,采用分布式近端策略优化方法,高效管理机组出力及系统的充放电能力,并实时将这些能力分配至各个节点。上层模型以最小化系统总运行成本为目标,优化热电机组的运行状态,并调控输电网络中参与充放电的电动汽车数量;下层模型则通过优化配电网络中电动汽车的充放电功率、...
解读: 该输配电网双层优化策略对阳光电源储能及充电桩业务具有重要价值。文中分布式近端策略优化算法可应用于ST系列储能变流器的多站点协调控制,优化PowerTitan储能系统在电网调度中的充放电策略,降低网损成本。针对大规模电动汽车接入场景,可指导充电桩产品开发智能调度功能,结合iSolarCloud平台实现...
利用机器学习对金属-有机框架材料进行从材料到系统的宽范围筛选以用于氢气储存
Broad range material-to-system screening of metal–organic frameworks for hydrogen storage using machine learning
Xinyi Wang · Hanna M.Breunig · Peng Peng · Applied Energy · 2025年1月 · Vol.383
摘要 氢气在向可持续能源系统转型过程中起着关键作用,在发电和工业应用中具有重要地位。金属-有机框架材料(MOFs)已成为高效氢气储存的有前景的介质。然而,由于目前已合成的MOF种类极为庞大,筛选出具备实际应用潜力的候选材料仍具挑战性。本研究结合分子模拟、机器学习与技术经济分析,评估了MOFs在广泛运行条件下用于氢气储存的综合性能。以往对MOF数据库的筛选主要关注低温条件下高氢吸附容量的材料,而本研究发现,实现成本最小化的最优温度和压力取决于MOF的原材料价格。具体而言,当MOF的价格为15美元/...
解读: 该MOF氢储能研究对阳光电源储能系统具有前瞻价值。研究揭示的机器学习筛选方法可借鉴于ST系列储能系统的热管理优化,特别是170-250K温区的成本最优化思路可应用于PowerTitan液冷系统设计。高比表面积材料特性分析为未来氢储能与光伏耦合系统提供技术路径,iSolarCloud平台可集成氢储能预...
基于多物理量融合图自编码器网络的质子交换膜燃料电池非均匀反应预测
Prediction of non-uniform reactions in PEMFC based on the multi-physics quantity fusion graph auto-encoder network
Pulin Zhang · Diankai Qiu · Linfa Peng · Applied Energy · 2025年1月 · Vol.383
摘要 为了满足高功率输出的需求,大面积的质子交换膜燃料电池(PEMFCs)已成为研究的重点。然而,在实际应用中,燃料电池内部的非均匀反应难以避免,这会导致性能下降以及电堆寿命缩短。了解燃料电池内部物理量分布的变化规律,并准确预测其未来的内部状态,对于燃料电池的控制与维护至关重要。本文提出了一种多物理量融合图自编码器网络(MP-GAE),该模型是一种针对燃料电池性能及多物理场分布的瞬态预测模型,重点考虑了反应时间、空间位置以及多个物理场之间的耦合关系。基于图注意力机制和时序网络,构建了分段时序图注...
解读: 该PEMFC多物理场预测技术对阳光电源氢能业务具有重要借鉴价值。论文提出的MP-GAE时空预测模型可应用于我司燃料电池系统的智能运维:1)非均匀反应预测算法可集成至iSolarCloud平台,实现电堆性能衰减的预测性维护;2)多物理场耦合分析方法可优化燃料电池DC/DC变换器的动态响应控制策略;3)...
基于微电网群租赁共享储能的主动配电网三层Stackelberg博弈调度
Trilayer Stackelberg Game Scheduling of Active Distribution Network Based on Microgrid Group Leasing Shared Energy Storage
Jinpeng Qiao · Yang Mi · Siyuan Ma · Yunhao Han 等5人 · Applied Energy · 2025年1月 · Vol.382
摘要——本文提出一种基于微电网群租赁共享储能的主动配电网三层Stackelberg博弈(SG)调度策略。在上层,配电系统运营商作为领导者,综合考虑中层和下层的电力需求来确定交易价格,从而实现主动配电网的安全运行以及削峰填谷。在中层,共享储能运营商既可作为领导者制定租赁价格,也可作为跟随者响应交易价格,以保证共享储能系统的可靠充放电与高效利用。在下层,微电网联盟作为跟随者制定租赁容量并响应交易价格,从而确保电力平衡及可再生能源的就地消纳。此外,为有效求解该三层SG模型,采用多步逆向归纳法证明了均衡...
解读: 该三层博弈调度策略对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。通过配网运营商-共享储能-微网群的分层博弈机制,可优化ST-PCS的充放电策略,提升储能利用率。分布式嵌套迭代算法可集成至iSolarCloud平台,实现多微网协同调度和削峰填谷。该模型为阳光电源开发共享储能租...
基于图特征与深度学习的锂离子电池退化轨迹早期感知
Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning
Haichuan Zhao · Jinhao Meng · Qiao Peng · Applied Energy · 2025年1月 · Vol.381
摘要 在电池储能系统(BESS)的全生命周期管理中,早期捕捉锂离子电池(LIB)的退化路径至关重要,然而现有研究主要集中在短期电池健康状态(如健康状态,SOH)诊断。本研究提出一种创新性概念,旨在仅利用少量初始循环数据即可感知锂离子电池的退化轨迹,从而为BESS复杂化的运行与维护策略预留充足的调整空间。本文提出一种新颖的深度学习框架,通过构建基于电池早期使用数据的图特征来获取容量退化轨迹。为了捕获更丰富的容量衰减特征,该框架通过生成增量容量(IC)曲线和容量差分曲线对电压-容量数据进行增强,并将...
解读: 该早期电池退化轨迹预测技术对阳光电源ST系列储能系统及PowerTitan产品具有重要价值。通过少量初始循环数据的图形化特征和深度学习,可在电池全生命周期早期预判容量衰减路径,为储能系统预测性维护提供60个循环内的精准预警。该技术可集成至iSolarCloud平台,结合增量容量曲线分析,优化BMS健...
利用SHAP值理解传统与非传统建筑群中乡村形态与光伏发电潜力之间的关系
Understanding the relationship between rural morphology and photovoltaic (PV) potential in traditional and non-traditional building clusters using shapley additive exPlanations (SHAP) values
Jiang Liu · Changhai Peng · Junxue Zhang · Applied Energy · 2025年1月 · Vol.380
摘要 农村地区拥有大量适合安装光伏板的屋顶和立面。然而,乡村形态对光伏发电潜力的影响尚不明确,制约了其有效利用。为应对这一挑战,本研究选取南京市300个传统与非传统农村建筑群作为研究对象,识别出17项形态学指标,涵盖地块形状、建筑密度、建筑形式及地形变化等方面。通过模拟各集群的年光伏发电量和均化度电成本(LCOE),并采用可解释的机器学习框架(XGBoost算法结合SHAP值),探讨了乡村建筑形态与光伏发电潜力之间的关系。结果表明,平均建筑高度(BH)和容积率(FAR)是影响发电量的关键因素,而...
解读: 该研究揭示农村建筑形态对光伏潜力的影响机制,对阳光电源SG系列逆变器在农村分布式光伏市场具有重要指导价值。研究发现建筑高度和容积率是关键因素,可优化我司MPPT算法在复杂遮挡场景下的追踪策略。针对三类技术潜力分区(低高低FAR、高低FAR、高高FAR),可差异化配置1500V系统方案,结合iSola...
第 1 / 2 页