← 返回
揭示钠化石墨负极主导的NFPP/HC软包电池热失控机制
Uncovering Sodiated HC dominated thermal runaway mechanism of NFPP/HC pouch battery
| 作者 | Wei Li · Shini Lin · Honghao Xi · Yuan Qin · Qilong Wu · Jing Zeng · Peng Zhang · Jinbao Zhao |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 391 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The thermal runaway mechanism of NFPP/HC pouch battery was revealed. |
语言:
中文摘要
摘要 钠离子电池(SIBs)因其资源丰富和优异的电化学性能,被认为是大规模储能系统(LSESS)中极具前景的技术。然而,SIBs的安全性鲜有讨论,而热稳定性对其电池应用至关重要,尤其是在LSESS中的应用。本研究揭示了由钠化负极产热主导的Na₃Fe₂(PO₄)(P₂O₇)||硬碳(NFPP/HC)软包电池的热失控机制。基于电池和材料层面的产热分析表明,硬碳(HC)与电解液之间的放热反应在100 °C时即开始发生(NFPP与电解液的放热反应发生在约230 °C),且负极与电解液的反应释放大量热量,而NFPP材料表现出较弱且缓和的放热行为。同时,隔膜的熔融温度与热失控触发温度极为接近。因此,HC与电解液之间的放热反应可导致隔膜熔化,从而引发SIBs的热失控。更严重的是,当发生钠枝晶析出时,电池的安全性将进一步恶化。鉴于SIBs在热失控初期具有显著产热的特点,本研究将具有更高热稳定性和更好润湿性的陶瓷涂层隔膜应用于SIBs,显著提升了电池的安全性能。该研究揭示了NFPP/HC体系钠离子电池的热失控机制,有望为更安全SIBs的研发提供指导。
English Abstract
Abstract Sodium-ion batteries (SIBs) are considered a promising technology for large-scale energy storage systems (LSESS) because of their rich resources and outstanding electrochemical performance . However, the safety of SIBs is rarely discussed, and the thermal stability is critical to the application of the battery , especially for LSESS. In this study, the thermal runaway mechanism of Na 3 Fe 2 (PO 4 )(P 2 O 7 )||hard carbon (NFPP/HC) pouch batteries dominated by heat generation from the sodiated anode has been uncovered. The heat generation analysis based on battery and material levels shows that the exothermic reaction between HC and the electrolyte begins to occur at 100 °C (the exothermic reaction between NFPP and the electrolyte is near 230 °C), and the reaction between the anode and electrolyte releases a large amount of heat, while NFPP materials exhibit less and milder exothermic behavior. Meanwhile, the melting temperature of the separator is extremely close to the triggering temperature of thermal runaway. Therefore, the exothermic reaction between HC and the electrolyte can cause the separator to melt, thus triggering thermal runaway of the SIBs. More seriously, when sodium plating occurs, the safety of the battery will further deteriorate. Considering the characteristic of great heat generation in the early stage of thermal runaway of SIBs, the ceramic-coated separators with higher thermal stability and higher wettability are applied to SIBs, which significantly improve battery safety. This study reveals the mechanism of thermal runaway in SIBs (NFPP/HC), which is expected to provide guidance for the research of safer SIBs.
S
SunView 深度解读
该钠离子电池热失控机理研究对阳光电源PowerTitan等大规模储能系统安全设计具有重要参考价值。研究揭示硬碳负极在100°C即开始放热反应,远低于正极材料230°C,且隔膜熔点接近热失控触发温度。这为ST系列PCS的热管理策略优化提供依据:需在电池簇级别加强温度监测,设置更严格的100°C预警阈值;陶瓷涂层隔膜方案可纳入储能系统电芯选型标准。结合iSolarCloud平台的预测性维护算法,可实现钠离子储能系统的早期热失控预警,提升大规模储能电站的本质安全水平,支撑公司在低成本长时储能领域的技术布局。