← 返回
储能系统技术 ★ 5.0

一种融合虚拟储能与氢气废热回收的南极无人观测站两阶段分布鲁棒低碳运行方法

A two-stage distributionally robust low-carbon operation method for antarctic unmanned observation station integrating virtual energy storage and hydrogen waste heat recovery

作者 Longwen Changab1 · Zening Liab · Xingtao Tianc · Jia Suc · Xinyue Changab1 · Yixun Xueab1 · Zhengmao Lid · Xiaolong Jine · Peng Wangf · Hongbin Sunab
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 400 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A multi-energy complementary model is developed for the Antarctic UOS with a composite enclosure structure.
语言:

中文摘要

摘要 为降低南极无人观测站(UOS)运行过程中的碳排放,本文提出了一种融合虚拟储能(VES)与氢气废热回收(HWHR)的两阶段分布鲁棒低碳运行方法。首先,针对具有复合围护结构的UOS,构建了包含风能、太阳能、氢能及电池储能的多能互补模型;该模型考虑了风力机结冰与光伏组件积雪覆盖的影响,并引入了氢能源系统与热泵(HPs)之间的电热耦合关系。其次,基于不精确狄利克雷模型(IDM)构建模糊集,建立了在特定置信水平下刻画南极地区风电与光伏发电(WP)出力以及室外温度不确定性的不确定性集合。进一步地,提出了考虑虚拟储能与氢气废热回收的UOS两阶段分布鲁棒优化策略,并可通过调节不确定性控制参数调整模型的保守性水平。最后,采用不精确增强型列与约束生成(IE-C&CG)算法对原始UOS优化问题进行分解并迭代求解。基于南极实际气象数据的测试结果表明,所提方法能够有效利用UOS中热泵及氢能源设备的供热灵活性,在确保科学仪器所需运行温度的前提下,显著降低UOS的碳排放水平。

English Abstract

Abstract To reduce the carbon emissions of Antarctic unmanned observation station (UOS) operations, this paper proposes a two-stage distributionally robust low-carbon operation method, integrating virtual energy storage (VES) and hydrogen waste heat recovery (HWHR). First, a multi-energy complementary model incorporating wind, solar, hydrogen, and battery storage is developed for the UOS with a composite enclosure structure. The model accounts for wind turbine icing and photovoltaic snow coverage, and incorporates electro-thermal coupling between hydrogen energy systems and heat pumps (HPs). Then, a fuzzy set is constructed via the imprecise Dirichlet model (IDM), establishing the uncertainty set characterizing Antarctic wind and photovoltaic (WP) output and outdoor temperature at a specific confidence level. Further, a two-stage distributionally robust optimization strategy for the UOS considering VES and HWHR is developed, and the conservatism level can be adjusted by tuning uncertainty control parameters. Finally, the original UOS optimization problem is decomposed and solved iteratively using the Inexact Enhanced column-and-constraint generation (IE-C&CG) algorithm. The test results with real meteorological data from Antarctica demonstrate that our method effectively leverages the heating flexibility of the HP and hydrogen energy equipment in the UOS, and significantly reduces UOS carbon emissions while ensuring the required operating temperature for scientific equipment.
S

SunView 深度解读

该南极无人站低碳运行技术对阳光电源极端环境能源解决方案具有重要价值。研究中的风光氢储多能互补架构可直接应用于ST系列储能变流器与SG光伏逆变器的协同控制策略,特别是光伏积雪、风机结冰等极端工况建模为1500V系统在高寒地区的MPPT优化提供参考。两阶段分布鲁棒优化方法可集成至iSolarCloud平台,增强微网系统在不确定性环境下的预测性维护能力。虚拟储能与氢能余热回收的电热耦合思路,为PowerTitan储能系统拓展热电联供场景提供创新方向,助力公司在极地科考站、高原基站等特殊应用领域的市场开拓。