← 返回
氢能与燃料电池 SiC器件 DAB ★ 5.0

基于多物理量融合图自编码器网络的质子交换膜燃料电池非均匀反应预测

Prediction of non-uniform reactions in PEMFC based on the multi-physics quantity fusion graph auto-encoder network

作者 Pulin Zhang · Diankai Qiu · Linfa Peng
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 383 卷
技术分类 氢能与燃料电池
技术标签 SiC器件 DAB
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A transient model for predicting physical field non-uniformity in PEMFCs was created.
语言:

中文摘要

摘要 为了满足高功率输出的需求,大面积的质子交换膜燃料电池(PEMFCs)已成为研究的重点。然而,在实际应用中,燃料电池内部的非均匀反应难以避免,这会导致性能下降以及电堆寿命缩短。了解燃料电池内部物理量分布的变化规律,并准确预测其未来的内部状态,对于燃料电池的控制与维护至关重要。本文提出了一种多物理量融合图自编码器网络(MP-GAE),该模型是一种针对燃料电池性能及多物理场分布的瞬态预测模型,重点考虑了反应时间、空间位置以及多个物理场之间的耦合关系。基于图注意力机制和时序网络,构建了分段时序图注意力网络(PT-GAT),用于提取物理量变化的时空规律。结合自编码器结构以及五种物理量之间的相互关系,将多个预测子模型集成至MP-GAE框架中,以提升整体预测性能。实验结果表明,MP-GAE能够精确预测物理场的变化,在负载电流密度、气体压力、入口相对湿度、化学计量比和温度等多种复杂工况变化条件下均表现出良好的预测能力。所提出的模型能够有效预测燃料电池反应区域内五种物理量的非均匀演化过程,为大面积燃料电池的控制与管理提供了有力的信息支持和技术辅助。

English Abstract

Abstract To meet the demands of high power output , proton exchange membrane fuel cells (PEMFCs) with large area have become a significant focus of research. However, non-uniform reactions in fuel cells are unavoidable in practice, leading to performance degradation and reduced stack lifespan. Understanding the distribution of physical quantity changes within the fuel cell and predicting its future internal states are crucial for control and maintenance of fuel cells. This paper proposes a Multi-Physics quantity fusion Graph Auto-Encoder network (MP-GAE), which is a transient prediction model for the performance and multi-physical field distribution in fuel cell by focusing on three aspects: reaction time, spatial location , and the coupling relationships of multiple physical fields. Based on graph attention mechanisms and temporal networks, a Partitioned Temporal Graph Attention Network (PT-GAT) is established to extract spatiotemporal regularities. Based on the Auto-Encoder structure and the interrelationships among the five physical quantities, these prediction models are integrated into MP-GAE to enhance the model's prediction performance. Experimental results show that MP-GAE can accurately predict changes in physical fields and performs well under complex conditions such as variations in load current density, gas pressure, inlet relative humidity , stoichiometric ratio and temperature. The proposed model effectively predicts the non-uniform variation processes of five physical quantities within the reaction area of fuel cells, providing information and assistance for the control and management of large-area fuel cells.
S

SunView 深度解读

该PEMFC多物理场预测技术对阳光电源氢能业务具有重要借鉴价值。论文提出的MP-GAE时空预测模型可应用于我司燃料电池系统的智能运维:1)非均匀反应预测算法可集成至iSolarCloud平台,实现电堆性能衰减的预测性维护;2)多物理场耦合分析方法可优化燃料电池DC/DC变换器的动态响应控制策略;3)时空图注意力网络架构可拓展至大型储能电站ST系列PCS的温度场与电场协同管理,提升系统可靠性。该技术与我司SiC功率器件、GFM控制技术形成协同,助力氢储一体化解决方案开发。