← 返回
海洋燃料电池中的瞬态能量转换:真实海况滚转条件下传热传质的多物理场分析
Transient energy conversion in marine fuel cells: Multiphysics analysis of heat/mass transfer under realistic oceanic roll conditions
| 作者 | Zheng Dong · Yanjun Chen · Deqiang He |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 338 卷 |
| 技术分类 | 氢能与燃料电池 |
| 技术标签 | 储能系统 SiC器件 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A PEMFC model coupled with three-dimensional multiphysics is constructed. |
语言:
中文摘要
质子交换膜燃料电池(PEMFC)技术已成为船舶推进系统中一种具有前景的高效率、零排放动力解决方案。尽管已知船舶运动引起的惯性力会影响PEMFC的性能,但在滚转条件下其具体影响机制仍尚未得到充分研究。本研究通过一个集成多物理场耦合的三维瞬态模型,系统地探究了海洋滚转运动下PEMFC的动态特性。所建立的框架结合了水动力分析与动态更新的滚转运动学参数。结果表明,滚转运动会使得燃料电池输出功率最大降低9.89%,电流密度最大波动达16.14%,温度波动达到23.55%。这些波动幅度随滚转周期的减小和滚转角度的增大而加剧。此外,较高的工作电压和较低的工作压力能够缓解由滚转引起的扰动。就滚转效应而言,流向惯性力成为主导因素。滚转运动驱动了氢气和氧气浓度的重新分布,调制了流道内的流动速度,并改变了压力梯度。由此产生的多物理场相互作用破坏了电化学反应动力学,导致氢气消耗的不稳定性(包括效率损失)以及膜内热分布的非均匀性。
English Abstract
Abstract Proton exchange membrane fuel cell (PEMFC) technology has emerged as a promising high-efficiency and zero-emission power solution for marine propulsion systems. While inertial forces induced by vessel motion are known to affect PEMFC performance, the specific impact mechanisms under rolling conditions remain unexplored. This study presents a systematic investigation of PEMFC dynamic characteristics under ocean rolling motion through a three-dimensional transient model integrating multiphysics coupling. The developed framework combines hydrodynamic analysis with dynamically updated rolling kinematics. The results show that the rolling motion leads to a maximum reduction of 9.89% in the fuel cell’s output power, a maximum fluctuation of 16.14% in the current density, and a 23.55% fluctuation in temperature. The magnitudes of these fluctuations escalate with decreasing rolling periods and increasing rolling angles. Additionally, higher operating voltages and lower operating pressures mitigate rolling-induced perturbations. Regarding the rolling effects, the streamwise inertial force emerges as a dominant factor. The rolling motion drives the redistribution of hydrogen and oxygen concentrations, modulates flow velocities, and alters pressure gradients within the flow channels. Consequently, these multiphysics interactions disrupt electrochemical kinetics, resulting in variability in hydrogen consumption (including efficiency losses) and thermal heterogeneity in the membrane.
S
SunView 深度解读
该燃料电池多物理场耦合研究对阳光电源氢能储能系统及海洋微电网方案具有重要参考价值。研究揭示的动态工况下热-质传递特性与阳光电源ST系列PCS的多物理场协同控制技术高度契合。滚动工况导致的功率波动(9.89%)和电流密度波动(16.14%)可借鉴应用于船舶储能系统的GFM控制策略优化,通过VSG技术补偿动态扰动。多物理场建模方法可拓展至SiC功率器件的热管理设计,提升海洋环境下PowerTitan系统的可靠性。该研究为阳光电源拓展船舶电气化及氢储能混合系统提供理论支撑。