← 返回
集成多物理场建模与机器学习以提升质子交换膜水电解系统的效率与热管理
Integrating multiphysics modeling and machine learning for enhanced efficiency and thermal management in PEM water electrolyzer systems
| 作者 | Zilong Yanga · Jin Yangb · Haoran Sunb · Weiqun Liua · Hongkun Lia · Qiao Zhua |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 氢能与燃料电池 |
| 技术标签 | SiC器件 多物理场耦合 机器学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A practical optimization problem for the operating variables of the electrolyzer system is formulated. |
语言:
中文摘要
摘要 质子交换膜(PEM)水电解槽是实现可持续氢气生产的一项有前景的技术,然而在不同工况下优化其性能仍是一个关键挑战。本研究构建了一个优化问题,旨在考察关键操作参数(如入口流量Q_in和入口温度T_in)如何影响一个5 cm × 5 cm的PEM水电解槽的性能。目标是最大化系统效率、确保热安全性,并最小化辅助系统(BOP)的能耗。首先,提出了一种集管式直通道PEM水电解槽模型,该模型考虑了多物理场耦合效应,用以揭示入口温度和流量对氢气生产效率及BOP能耗的影响规律。随后,建立了用于提升系统性能的优化问题。然而,由于采用三维多物理场模型求解优化问题计算成本较高,因此开发了一种人工神经网络(ANN)模型作为替代模型,有效降低了计算负担。接下来,利用ANN模型结合粒子群优化(PSO)算法,在每个输入功率点上确定了最优运行条件。结果表明,随着输入电功率P_in从11 W增加到35 W,最优效率下降了7.5%;为维持安全高效的运行状态,T_in需降低6.1%,而Q_in则需要增至原来的三倍。最后,为验证优化结果的有效性,选取三个功率点进行对比分析,证实了优化结果的可行性与合理性。本研究为单电池PEM水电解槽的性能分析提供了一种切实可行的方法。
English Abstract
Abstract Proton exchange membrane (PEM) water electrolyzers are a promising technology for sustainable hydrogen production, yet optimizing their performance under varying conditions remains a key challenge. This study formulates an optimization problem to examine how key operating parameters, such as inlet flow rate Q in and temperature T in , enhance performance in a 5 cm × 5 cm PEM water electrolyzer. The goal is to maximize system efficiency, ensure thermal safety, and minimize energy consumption in the balance of plant (BOP). Firstly, a manifold-type straight-channel PEM water electrolyzer model is introduced, accounting for multiphysics coupling effects, to show how inlet temperature and flow rate influence hydrogen production efficiency and BOP energy consumption. After that, the optimization problem is established to enhance system performance. However, due to the high computational cost of solving the optimization problem with a three-dimensional multiphysics model, an artificial neural network (ANN) model is developed as a surrogate, effectively reducing the computational burden. In the next step, using the ANN model, optimal operating conditions at each input power point are identified through the particle swarm optimization (PSO) algorithm. The results show that as the input electrical power P in increases from 11 W to 35 W, the optimal efficiency decreases by 7.5 %. To maintain safe and efficient operation, T in must decrease by 6.1 %, and Q in needs to be tripled. Finally, to validate the optimization, three power points are selected for comparison, confirming the feasibility and reasonableness of the outcomes. This study provides a practical approach for performance analysis of a single-cell PEM water electrolyzer.
S
SunView 深度解读
该PEM电解槽多物理场建模与机器学习优化技术对阳光电源氢能业务具有重要借鉴价值。研究中的热管理策略、效率优化方法可直接应用于ST系列储能变流器的热设计优化,通过ANN-PSO算法降低计算成本的思路可迁移至iSolarCloud平台的预测性维护模块。多物理场耦合仿真经验可支撑SiC器件在大功率电解系统中的应用开发,为公司布局绿氢制储一体化解决方案提供技术储备,特别是在光伏制氢系统的能量管理与效率提升方面具有协同价值。