← 返回
氢能与燃料电池 SiC器件 多物理场耦合 ★ 5.0

一种集成实验与数值研究的竹节形流场设计下风冷式质子交换膜燃料电池性能及传热传质动力学

An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design

作者 Kai-Qi Zhu · Quan Ding · Ben-Xi Zhang · Jiang-Hai Xu · Yan-Ru Yang · Duu-Jong Le · Zhong-Min Wan · Xiao-Dong Wang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 氢能与燃料电池
技术标签 SiC器件 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Bamoo-shaped flow field boots power density and energy efficiency in air-cooled PEMFC.
语言:

中文摘要

摘要 风冷式质子交换膜燃料电池(PEMFC)中复杂的传热传质耦合现象以及物理场分布不均的问题,严重影响其功率密度和水热管理性能。作为关键部件,阴极流场在燃料供给、散热以及水传输方面对风冷式PEMFC起着至关重要的作用。优化流场结构设计是应对上述挑战的关键策略。本研究提出了一种创新的竹节形流场设计,并在25 cm²的单电池中进行了实验验证,结果证明该设计能有效提升风冷式PEMFC的传热传质能力与功率密度,同时降低供气能耗。此外,还建立了三维多相数值模型,用于深入探究该流场结构下液态水、反应物和热量的耦合传输机理及其分布特征。实验结果表明,在0.65 A cm⁻²的高电流密度负载下,相较于传统的平行流场,新型竹节形流场的泵功增加了17.8%;尽管如此,其功率密度仍提升了5.45%,能量效率提高了4.17%。此外,该设计表现出更优的冷却性能,有效缓解了电池内部局部热点问题。数值分析表明,竹节形结构中的分段加速效应以及涡旋区域是提升电池性能的关键因素。该结构缓解了因高速气流速度梯度引起的多孔电极脱水以及传质能力下降的问题。同时,竹节结构引发的高传热熵区域增强了多孔电极中的散热效果,且该设计还显著提高了反应物在多孔电极内的分布均匀性。

English Abstract

Abstract The convoluted heat and mass coupling transfer phenomena and uneven physical field distribution in air-cooled proton exchange membrane fuel cells (PEMFCs) critically affect their power density and water-thermal management. As a crucial component, the cathode flow field is vital for fuel management, heat dissipation, and water transport of air-cooled PEMFC. Refining the flow field design is a key strategy to approach the above challenges. In this study, an innovative bamboo-shaped flow field is proposed and experimentally verified in a 25 cm 2 single cell, which proves its effectiveness in boosting the heat-mass transfer capacity and power density of air-cooled PEMFC. Also, it reduces fuel supply energy costs. Meanwhile, a three-dimensional multiphase numerical model is applied to explore the coupled transfer mechanisms and distribution features of liquid water , reactant, and heat under this design. Experimental results show that, at a high load of 0.65 A cm −2 , the novel design increases pumping power by 17.8 % compared to the conventional parallel flow field. Despite this, it accomplishes a 5.45 % enhancement in power density and a 4.17 % rise in energy efficiency. Besides, it exhibited superior cooling efficiency and effectively mitigated localized hot spots within the cell. Numerical analysis shows that the segmental acceleration effect and the vortex regions within the bamboo-shaped design are the key factors to improve cell performance. It alleviates the issues of dehydration of the porous electrode and decreased mass transfer capability caused by high airflow velocity gradients. Further, the high heat transfer entropy region caused by the bamboo joint structure elevates the heat dissipation in porous electrodes. Simultaneously, the design also boosts the reactant distribution uniformity in the porous electrode.
S

SunView 深度解读

该燃料电池热质传输优化技术对阳光电源氢能业务具有重要借鉴价值。竹节型流场设计通过分段加速和涡流区优化实现5.45%功率密度提升和4.17%能效增益,其多物理场耦合仿真方法可应用于公司储能PCS的热管理优化。研究中的熵分析法和非均匀流场设计理念,可迁移至SiC功率器件散热结构设计,提升ST系列PCS和充电桩产品的热管理性能。该文献的实验验证与数值建模结合方法,也为公司氢燃料电池系统开发提供了完整的设计优化路径。