← 返回
氢能与燃料电池 储能系统 SiC器件 调峰调频 ★ 5.0

关于电解槽装置爬坡速率限制的研究:建模基础与系统级影响分析

On the Ramp-Rate Limitation of Electrolysis Plants: Modeling Fundamentals and System-Level Impact Analysis

作者 Nikita Taranin · Mehdi Ghazavi Dozein · Oscar Saborío-Romano · Nicolaos A. Cutululis
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年9月
技术分类 氢能与燃料电池
技术标签 储能系统 SiC器件 调峰调频
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电解槽 爬坡速率限制 电力系统动态 氢气生产 频率控制服务
语言:

中文摘要

本文研究了电解槽的爬坡速率限制及其对电力系统动态特性的影响。随着绿氢生产的扩大,理解电解槽的动态行为对电网稳定至关重要,尤其是在功率平衡和频率调节等辅助服务方面。研究识别了限制电解槽启停速率的技术因素,涵盖电堆技术、逆变器及厂站层面,并进一步划分为基于物理机理与安全相关的限制。通过结合电解槽动态模型与制氢厂爬坡速率约束,构建包含电化学机制、等效电路及下游产氢模型的综合模型,并设计带爬坡速率限制的功率电子控制方案。分析揭示了电解槽功率变化、爬坡速率限制与氢气产量间的关联,表明速率限制直接影响下游制氢过程。案例研究评估了不同爬坡速率在厂站阶跃响应与系统暂态事件中的表现,阐明其对系统频率动态的潜在负面影响,同时指出合理设置爬坡速率有助于稳定氢气生产、避免意外停机,为电解槽参与频率控制提供理论支持。

English Abstract

This paper investigates the ramp-rate limitations of electrolyzers and their impact on power system dynamics. As green hydrogen production scales up, understanding the dynamic behavior of electrolyzers becomes crucial for grid stability, especially concerning ancillary services like power balancing and frequency regulation. The study identifies factors limiting electrolyzer ramp-up/down operation, categorizing them into stack technology, inverter, and plant-related aspects, further dividing them into physics-based and safety-related limitations. The research combines a dynamic model of an electrolysis stack with the ramp-rate limits of the hydrogen plant. The model incorporates an electrochemical representation, an equivalent circuit reflecting stack dynamic behavior, and a downstream model for hydrogen production. A control scheme for the electrolyzer power-electronics interface with a ramp-rate limiter is implemented. Through analytical discussion, the paper demonstrates the relationship between changes in electrolyzer power consumption, ramp-rate limit, and hydrogen production, highlighting the direct impact of electrolyzer ramp-rate limit operation on downstream hydrogen processes. Case studies explore the effects of varying ramp rates, including plant-level step simulations and system-level transient events. This study demonstrates how and to what extent ramp-rate limitations may negatively impact system frequency dynamics during power imbalances, as well as the positive effects of operating electrolyzers with ramp-rate limits on hydrogen processes and preventing unexpected shutdowns, thus offering insights for utilizing electrolysis plants in frequency control services.
S

SunView 深度解读

该电解槽爬坡速率限制研究对阳光电源氢能储能系统具有重要应用价值。研究揭示的电堆动态特性与功率电子控制方案可直接应用于ST系列储能变流器与电解槽的协同控制,优化制氢储能系统的功率响应特性。爬坡速率约束建模方法可集成至PowerTitan储能系统的能量管理策略,在光伏-储能-制氢耦合场景中实现频率调节与氢气产量的平衡优化。研究提出的电化学-电路-产氢综合模型为阳光电源开发构网型GFM控制的制氢系统提供理论基础,通过合理设置爬坡速率参数,既可提升电解槽参与电网辅助服务的能力,又能保障制氢过程稳定性,避免频繁启停导致的设备损耗,支撑绿氢-储能一体化解决方案的技术创新。