← 返回
基于数值模拟与机器学习建模优化住宅用质子交换膜燃料电池微型热电联产系统中的氢气储存
Optimization of hydrogen gas storage in PEM fuel cell mCHP system for residential applications using numerical and machine learning modeling
| 作者 | Taoufiq Kaoutar · Hasna Louahli · Pierre Schaetze |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 341 卷 |
| 技术分类 | 氢能与燃料电池 |
| 技术标签 | 储能系统 户用光伏 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A 0.75 kW PEM FC-MCHP with 10 bar H2 solid storage was analyzed for a 120 m2 home. |
语言:
中文摘要
摘要 本研究探讨了基于氢能源系统的集成与优化,重点在于将金属氢化物(MH)储氢与质子交换膜燃料电池微型热电联产(PEMFC MCHP)系统相结合,应用于住宅领域。该MH储氢系统与热泵耦合运行,充放电压力为10 bar。采用COMSOL 6.1版本软件,利用固体与流体传热模块及Brinkman方程模块建立模型,并通过实验数据进行验证,同时应用机器学习方法(前馈神经网络)对MH动态过程进行预测性建模。研究发现,较小的500 NL储氢罐具有较高的质量比热需求,但氢气动力学性能更优,可在一小时内达到约77%的容量;而较大的6500 NL储氢罐吸氢过程更为缓慢(约57%/小时),但可降低热管理强度。使用13个500 NL储氢罐可在1小时内实现约25%的放氢量,但需消耗约2170 Wh的加热能量;相比之下,单个6500 NL储氢罐仅实现约48.5%的放氢量,却仅消耗约1750 Wh能量,表明在更快的动力学响应与更低的热负荷之间存在权衡。通过遗传算法识别出最优配置为两个6500 NL储氢罐,可在最大2.4 kW加热和2.45 kW冷却条件下满足约68%的总氢气消耗和65%的氢气产量。与170 bar高压压缩储氢系统的进一步比较表明,高压储氢罐具有更低的瞬时热需求。当在10 bar MH系统基础上增加170 bar压缩氢气储存,且总储氢容量扩展至200 Nm³时,氢气供应覆盖率从约70%提升至约97%,但代价是更高的压缩能耗。所提出的基于MH的储氢方案,特别是在中等压力下结合精心设计的储氢罐几何结构,能够显著提升面向120 m²住宅建筑空间采暖与生活热水供应的运行灵活性,而机器学习优化进一步改善了系统的充放电性能。
English Abstract
Abstract This study explores the integration and optimization of a hydrogen-based energy system, emphasizing the use of metal hydride (MH) storage coupled with Proton Exchange Membrane Fuel Cell Micro Combined Heat and Power (PEMFC MCHP) system for residential applications. MH storage coupled to a heat pump, operates at charging and discharging pressures of 10 bar. COMSOL model in 6.1 version using heat transfer in solids and fluids in brinkman equations modules is validated by experimental data and uses machine learning (Feedforward Neural Networks) for predictive modeling of MH dynamics. Smaller 500 NL tanks were found to have high mass-specific heat demand but faster hydrogen gas kinetics, reaching (∼77 % capacity in one hour), whereas larger 6500 NL (∼57 %/hour) absorb hydrogen gas more gradually but reduce thermal management intensities. Using 13 × 500 NL tanks reach ∼25 % discharge in 1 h but require ∼2170 Wh heating, whereas one 6500 NL tank only attains ∼48.5 % discharge yet uses ∼1750 Wh, illustrating a trade-off between faster kinetics and lower thermal load. A genetic algorithm identified an optimal configuration of two 6500 NL tanks that covered ∼68 % of total hydrogen gas consumption and 65 % of production at a maximum of 2.4 kW heating and 2.45 kW cooling. Additional comparisons with 170 bar compressed storage revealed lower instantaneous thermal requirements for high-pressure gas tanks. Adding a 170 bar compressed H 2 alongside the 10 bar MH system, hydrogen gas coverage rose from ∼70 % to ∼97 % when storage expanded to 200 Nm 3 , but at the cost of higher compression energy. The proposed MH-based approach, especially at moderate pressures with carefully planned tank geometries, achieves enhanced operational flexibility for a residential 120 m 2 building’s space heating and hot water, while machine learning optimizations further refine charge–discharge performance.
S
SunView 深度解读
该氢储能-燃料电池mCHP系统研究对阳光电源储能及户用产品线具有重要参考价值。金属氢化物储能的热管理优化思路可借鉴至ST系列储能变流器的温控策略;研究中采用的机器学习预测建模方法与iSolarCloud平台的预测性维护技术高度契合,可用于优化户用光伏-储能系统的充放电策略;燃料电池mCHP的冷热电联供模式为SG系列户用逆变器拓展多能互补应用提供新思路;遗传算法优化储能配置的方法论可应用于PowerTitan等大型储能系统的容量规划,提升系统经济性与运行灵活性。