← 返回
氢能与燃料电池 储能系统 ★ 5.0

大型远洋船舶多工况运行下并联IRGT/SOFC系统的最优功率分配策略与特性分析

Optimal power allocation strategy and characteristic analyze of parallel IRGT/SOFC system for large ocean-going vessel under multi-scenario operation

作者 Jiale Wena · Xicong Mia · Yubo Yaoa · Shengying Xiaoa · Jian Yangb · Catalina Spataru · Yiwu Wengc · Shilie Wengc · Xiaojing Lva
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 氢能与燃料电池
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Propose a parallel IRGT/SOFC all-electric propulsion system for large ocean-going vessels.
语言:

中文摘要

摘要 针对大型远洋船舶在多场景任务中对长续航、高效率运行的需求,本文提出一种结合并联级间冷却再热燃气轮机(IRGT)与固体氧化物燃料电池(SOFC)的新型全电推进系统。研究了该系统在典型运行场景下的协调功率切换特性及其相互关系,并制定了兼顾效率与安全性的宽负荷范围最优功率分配策略。结果表明,经验证的68 MW船舶混合动力系统在设计工况下效率达到50.1%,最大误差仅为2.5%,具有较高的建模精度。当船舶处于全速航行场景时,推进系统以2.11的功率比运行,效率为50.1%,此时需保证燃料流量大于0.967 kg/s,以避免涡轮叶片过热。当船舶转入机动巡航场景时,通过将R1、R2调节至0.99和0.58,系统在106.1的功率比下切换至IRGT主导模式,效率为45.8%,使高效运行区扩展至4–44 MW范围。对于非紧急的远海任务,船舶通常以经济航速航行以最大化续航距离;此时通过将1号机组的R1、R2分别提升至0.04和1,系统可在0.05的功率比下进入SOFC主导模式,最高效率达50.1%,同时防止SOFC过热。在6–10 MW的静音航行场景下,通过将R1、R2调节至0和0.42,双机组切换至纯SOFC运行模式,最高效率可达49.9%。所提出的最优功率分配策略将系统的高效运行区间由原有范围拓展了38.5%,覆盖10%–108%的负载率,效率维持在44.3%–50.5%之间,为下一代具备长续航能力、灵活负荷响应及多场景适应性的船舶动力系统提供了坚实的技术基础。

English Abstract

Abstract To address the demand for long-endurance and high-efficiency operation of large ocean-going vessels in multi-scenario missions, this study proposes an innovative all-electric propulsion system combining parallel intercooled reheat gas turbine (IRGT) and solid oxide fuel cell (SOFC). The coordination power switching characteristics and relationships between them under typical scenarios are investigated, and optimal power allocation strategies for wider load range considering efficiency and safety are developed. Results show that the validated 68 MW vessel hybrid system achieves 50.1 % efficiency with 2.5 % maximum error at design point, demonstrating high accuracy. When the vessel under full speed scenario, the propulsion system operates at 2.11 power ratio with 50.1 % efficiency, requiring fuel larger than 0.967 kg/s to avoid turbine blade overheating. When the vessel switches to mobile cruise scenario, adjusting R1, R2 to 0.99 and 0.58 shifts to IRGT mode under 106.1 power ratio with 45.8 % efficiency, which cause wider zone from 4 to 44 MW. For non-urgent oceanic missions, vessels generally sail at economical speed to maximize cruising range. By increasing R1, R2 of unit 1 to 0.04 and 1, unit 1 switches to SOFC-dominant mode at 0.05 power ratio with 50.1 % maximum efficiency, preventing SOFC overheating. For silent scenario with power from 6 to 10 MW, regulating R1, R2 to 0 and 0.42, dual units turn to SOFC-only mode with 49.9 % maximum efficiency. The optimal strategy expands operation zone by 38.5 % to 10 %–108 % with 44.3 %–50.5 % efficiency, providing technical foundation for next-generation marine power systems with long endurance, flexible load response, and multi-scenario adaptability.
S

SunView 深度解读

该船舶混合动力系统的多场景功率分配策略对阳光电源ST系列储能变流器及PowerTitan系统具有重要借鉴价值。其SOFC/燃气轮机协调切换机制可应用于光储充一体化场景的多模式能量管理,特别是GFM/GFL控制策略在微电网孤岛与并网切换中的优化。研究中50.1%系统效率及10%-108%宽负载范围运行特性,为阳光电源三电平拓扑PCS在宽功率范围内的效率优化提供参考,同时其安全约束下的功率分配算法可增强iSolarCloud平台的预测性维护能力,助力船舶、海岛等特殊场景储能解决方案开发。