← 返回
氢能与燃料电池 储能系统 ★ 5.0

基于多策略α进化优化的质子交换膜燃料电池约束参数估计

Multi-strategy alpha evolution optimization for constrained parameter estimation in Proton Exchange Membrane Fuel Cells

作者 Salih Berkan Aydemir · Funda Kutlu Onaya · KorhanÖkten
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 339 卷
技术分类 氢能与燃料电池
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 MSAE is a novel alpha evolution algorithm for estimating PEMFC parameters.
语言:

中文摘要

质子交换膜燃料电池(PEMFCs)是当前广泛应用于氢能源发电和储能系统中的装置。PEMFC参数估计对于优化燃料电池性能、降低成本以及确保系统可靠性至关重要。精确的参数估计有助于提升建模与仿真的准确性,并减少对昂贵且耗时实验的依赖。本研究聚焦于一种多策略α进化算法(MSAE),旨在提高PEMFC中参数估计的精度。MSAE在传统α进化算法的基础上进行了多项改进,例如采用Halton序列生成初始种群,并引入适应度-距离平衡技术以选择更优的候选解。为评估MSAE的一致性与可靠性,本文在三种不同情形下将其与现有文献中的方法进行了对比。情形I不施加任何参数限制,代表传统的参数估计方式;情形II引入参数间的约束条件以评估估计结果的一致性;情形III则进一步考察在不同限制条件下的一致性表现。结果通过误差平方和(SSE)与其他新兴算法进行比较。考虑到某些情况下SSE差异可能极小,本文还采用了其他误差指标进行综合评估。实验结果表明,MSAE在多种误差指标上均优于其他竞争性元启发式算法,包括更低的SSE、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)以及相对误差(RE),同时保证了高度一致且合理的参数估计结果。

English Abstract

Abstract PEMFCs (Proton Exchange Membrane Fuel Cells) are devices widely used today in hydrogen power generation and energy storage systems . PEMFC parameter estimation is crucial for optimizing fuel cell performance , reducing costs, and ensuring system reliability. Accurate estimation allows for better modeling and simulation, and minimizes the need for expensive and time-consuming experiments. The study focuses on a multistrategy alpha evolution algorithm (MSAE) aimed at improving the accuracy of parameter estimation in PEMFCs. The MSAE features enhancements over the traditional alpha evolution method, such as employing a Halton sequence to create the initial population and using a fitness-distance balance technique for selecting appropriate candidate solutions. To assess the coherence and reliability of MSAE, a comparison is made with existing techniques in the literature in three distinct cases. In Case I, there are no parameter restrictions, reflecting conventional parameter estimation approaches. Case II introduces restrictions among the parameters to evaluate consistency, while Case III investigates consistency with varying limits. The results are presented using the sum of squared error (SSE) for comparison with other upcoming algorithms. Considering that SSE differences may be very small in some cases, additional error measures are also used for the evaluation. The results demonstrate that MSAE exceeds other competitive metaheuristic algorithms by achieving lower error rates, including SSE, mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE) and relative error (RE), while also ensuring highly compatible parameter estimations.
S

SunView 深度解读

该PEMFC参数估计优化技术对阳光电源氢储能系统具有重要应用价值。MSAE算法的高精度参数辨识能力可应用于ST系列储能变流器与燃料电池的协同控制,通过精准建模减少实验成本,提升系统可靠性。其适应性约束优化方法可借鉴用于PowerTitan储能系统的多参数协同优化,结合iSolarCloud平台实现燃料电池健康状态预测性维护。该技术为阳光电源拓展氢能-储能融合解决方案提供算法支撑,增强新能源多元化布局竞争力。