← 返回
基于物理信息注意力残差网络的电池智能温度预警模型
Battery intelligent temperature warning model with physically-informed attention residual networks
| 作者 | Xue Ke · Lei Wang · Jun Wang · Anyang Wang · Ruilin Wang · Peng Liu · Li Li · Rong Han · Yiheng Yin · Feng Ryan Wang · Chunguang Kuai · Yuzheng Guo |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Merged NDC models with differential networks for efficiency and interpretability. |
语言:
中文摘要
摘要 电动汽车的快速发展对锂离子电池的热安全管理提出了更高要求。传统的物理模型需要大量离线参数辨识,在计算效率与模型保真度之间难以平衡;而数据驱动方法虽然精度较高,但缺乏可解释性,且在不同工况下需要大量数据支持。为应对上述挑战,本文提出了一种物理信息引导的注意力残差网络(Physics-Informed Attention Residual Network, PIARN),该模型将改进的非线性双电容模型与热集总模型嵌入到物理引导的循环神经网络框架中,从而提升了模型的可解释性与泛化能力。所设计的残差注意力网络由通道注意力模块和时间序列模块构成,能够分析在线测量数据与隐含物理状态,推断复杂的非线性动态响应,显著提高预测精度。其中,简化的物理模型用于捕捉系统的主要动态特性,而残差注意力模块则用于补偿被忽略的非线性关系。此外,采用一种自适应加权方法,通过缓解电压与温度损失函数量级差异的问题,加速了网络的收敛过程。在三个动态数据集上的验证结果表明,PIARN能够利用稀疏放电数据准确预测电池的电压与温度,展现出在不同工况下的强泛化能力。同时,本文设计了一种低成本的在线迭代训练框架,实现了精确的电池建模以及老化状态与热状态的全生命周期追踪;经过多次迭代后,温度预测的均方根误差低至0.1 °C,热预警准确率接近100 %。因此,所提出的PIARN模型显著提升了在线温度预测与热预警的准确性,从而有效增强了电池热管理水平。
English Abstract
Abstract The rapid development of electric vehicles demands improved thermal safety management of lithium-ion batteries. Traditional physical models require extensive offline parameter identification, struggling to balance computational efficiency and model fidelity, while data-driven methods, though precise, lack interpretability and require large datasets for varied conditions. To address these challenges, we propose the Physics-Informed Attention Residual Network (PIARN), which integrates an improved nonlinear dual-capacitor model and a thermal lumped model within a physics-guided recurrent neural network, enhancing both interpretability and generalizability. The residual attention network, comprising channel attention and time-series blocks, analyzes online measurements and hidden physical states to infer complex nonlinear dynamic responses, significantly improving accuracy. While a simplified physical model captures primary dynamics, the residual attention block corrects for missing nonlinear relationships. An adaptive weighting method accelerates network convergence by addressing voltage and temperature loss function magnitude discrepancy. Validation on three dynamic datasets demonstrates PIARN's ability to accurately predict battery voltage and temperature using sparse discharge data, showcasing strong generalization across varied conditions. Additionally, a cost-effective online iterative training framework is designed, enabling precise battery modeling and lifecycle tracking of aging and thermal status, with temperature prediction root mean square error as low as 0.1 °C and nearly 100 % accuracy in thermal warnings after multiple iterations. Thus, the novel PIARN model significantly enhance the accuracy of online temperature predictions and thermal warnings, thereby improving battery thermal management.
S
SunView 深度解读
该物理信息引导的电池温度预警技术对阳光电源储能系统具有重要价值。PIARN模型结合物理模型与深度学习,可集成至ST系列PCS和PowerTitan储能系统的BMS热管理模块,实现0.1°C精度的在线温度预测和近100%准确率的热预警。其轻量化物理模型与残差网络架构适合边缘计算部署,可通过iSolarCloud平台实现全生命周期电池健康追踪。该技术还可扩展至充电桩产品的电池安全监测,显著提升储能系统热安全管理水平和运维智能化能力。