← 返回
风电变流技术
★ 5.0
一种考虑尾流传播速度与偏转的新型动态尾流模型用于风速和发电功率预测
A novel dynamic wake model for prediction of wind speed and power production considering wake propagation velocity and deflection
| 作者 | Yun-Peng Song · Takeshi Ishihar |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 400 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A new wake propagation model is derived from numerical dynamic wake simulations. |
语言:
中文摘要
摘要 本研究提出了一种新型动态尾流模型,通过引入新的尾流传播速度模型和尾流偏转模型,用于预测实时风速和发电功率,并通过数值模拟和风洞试验进行了验证。首先,采用非定常雷诺平均纳维-斯托克斯(URANS)模型对动态尾流模型进行评估,并以相位平均的大涡模拟(LES)结果进行验证。基于考虑多种运行条件和来流条件的URANS模拟结果,提出了尾流传播速度模型。研究发现,风力机尾流的传播速度在近尾流区域小于环境风速的一半,并在远尾流区域渐近趋近于环境风速的约0.65倍。随后,针对偏航状态下的风力机,从动量守恒方程和双高斯尾流模型推导出新的尾流偏转模型,并通过实验结果和数值模拟对其进行验证。新提出的尾流偏转模型在近尾流和远尾流区域的风速及发电功率预测精度方面均表现出显著提升。最后,将所提出的尾流偏转模型和尾流传播速度模型整合至动态尾流模型中,并通过包含时变偏航角和时变风速的数值模拟进行验证。结果表明,在x = 7D处下游风力机发电功率的归一化均方根误差(NRMSE),相较于传统动态尾流模型,在时变偏航角模拟中由15.05%降低至1.89%,在时变风速模拟中由16.30%降低至7.35%。
English Abstract
Abstract In this study, a novel dynamic wake model is proposed to predict real-time wind speed and power production by incorporating a new wake propagation velocity model and a new wake deflection model and is validated by numerical simulations and wind tunnel tests. Firstly, the unsteady Reynolds-Averaging Navier-Stokes (URANS) model is used to evaluate the dynamic wake model and validated by phase-averaged LES results. The wake propagation velocity model is proposed based on the results of URANS simulations considering various operational and inflow conditions. It is found that the propagation velocity of the wind turbine wake is smaller than half of the ambient wind speed in the near wake region and asymptotically approaches approximately 0.65 times the ambient wind speed in the far wake region. The new wake deflection model for a yawed wind turbine is then derived from the momentum conservation equation and the double-Gaussian wake model and is validated by experimental results and numerical simulations. The new wake deflection model shows a significant improvement in prediction accuracy of wind speed and power production in both near and far wake regions. Finally, the proposed wake deflection and propagation velocity models are incorporated into the dynamic wake model and validated by numerical simulations with time-varying yaw angle and wind speed. The normalized root mean square error (NRMSE) of power production of downstream wind turbine at x = 7 D predicted by the proposed dynamic wake model is reduced from 15.05 % to 1.89 % for the simulation of time-varying yaw angle and from 16.30 % to 7.35 % for the simulation of time-varying wind speed compared to that using the conventional dynamic wake models.
S
SunView 深度解读
该动态尾流模型对阳光电源风电变流器及智能运维系统具有重要价值。通过精准预测风速变化和功率波动(NRMSE降至1.89%),可优化SG系列风电变流器的MPPT算法和功率跟踪策略。尾流传播速度模型(0.65倍环境风速)可集成至iSolarCloud平台,实现风场实时功率预测和偏航控制优化,提升发电效率。该模型为风储协同控制提供理论支撑,可结合ST系列储能PCS实现更精准的功率平滑和调度策略,降低风电波动对电网的冲击。