← 返回
基于模型-数据融合方法的锂离子电池储能系统惯性支撑持续功率边界在线估计
Online estimation of inertia-supporting sustaining power boundary of lithium-ion battery energy storage systems based on model-data fusion method
| 作者 | Shaoxin Shi · Qiao Peng · Tianqi Liu · Yunteng Dai · Jinhao Meng |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 393 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The SVM is applied to address the impact of SOC and discharge rate on the negative impedance in battery's ECM. |
语言:
中文摘要
摘要 锂离子电池储能系统(BESS)在为电力系统提供惯性支撑方面展现出巨大潜力。然而,如何在实现高效惯性支撑的同时保障电池的安全运行仍面临挑战,这要求对电池的输出边界进行准确估计,尤其是在在线运行条件下。然而,现有的电池输出功率边界评估方法通常忽略了惯性支撑特有的输出特性以及在线应用的需求,从而限制了其准确性与效率。本文提出了一种基于模型-数据融合方法(MDFM)的BESS惯性支撑持续功率边界(SPB)在线估计新方法。首先,开展一系列实验以研究电池在惯性支撑工况下的阻抗特性,并据此构建一种基于负电阻的等效电路模型(ECM),以包含电池固相扩散的非线性效应。鉴于荷电状态(SOC)和放电电流率对负阻抗具有非线性影响,采用支持向量机(SVM)对负阻抗进行建模,并将实验结果作为训练数据输入。随后,提出一种基于MDFM的改进ECM参数在线估计方法,其中负阻抗由SVM实时估计。在此基础上,结合截止电压、SOC和最大电流阈值等多重约束条件,采用多约束方法在线估计BESS的惯性支撑持续功率边界(SPB)。最后,通过实验验证了所提出的基于MDFM的ECM参数估计方法以及基于多约束的在线SPB估计方法的有效性。与传统的峰值功率估计方法相比,所提出的方法显著提高了BESS输出边界在线评估的准确性。
English Abstract
Abstract Lithium-ion battery energy storage system (BESS) demonstrates great potential to provide inertia support to the power grid. The balance between the efficient inertia support and secure operation of battery is challenging, which requires accurate estimation of battery output boundary, especially in online working conditions. However, the existing methods for assessing the output power boundary of battery usually ignore the special inertia-supporting output profile and the requirement for online application, limiting the accuracy and efficiency. This paper proposes a novel online estimation method of inertia-supporting sustaining power boundary (SPB) of BESS based on model-data fusion method (MDFM). First, a series of experiments are conducted to investigate the impedance characteristics of battery under inertia-supporting condition, based on which a negative resistor-based equivalent circuit model (ECM) is developed to involve the nonlinear solid-phase diffusion effects of battery. Recognizing the nonlinear impact of state of charge (SOC) and discharge current rate on the negative impedance, a support vector machine (SVM) is applied to model the negative impedance, where the experimental results are input as the training data. Then, an MDFM-based method is proposed for online parameter estimation of the improved ECM, where the negative impedance is estimated by the SVM in real-time. Based on the ECM, the inertia-supporting SPB of BESS, constrained by the cut-off voltage, SOC and maximum current thresholds , is estimated online by a multi-constraint-based method. Finally, experiments are conducted to validate the MDFM-based ECM estimation method and the multi-constraint-based online SPB estimation method. Compared to conventional peak power estimation methods, the proposed method significantly improves the accuracy of BESS's output boundary assessment in an online manner.
S
SunView 深度解读
该储能惯量支撑功率边界在线估算技术对阳光电源ST系列PCS及PowerTitan储能系统具有重要应用价值。通过模型-数据融合方法实现锂电池输出边界的实时精准评估,可直接集成至VSG虚拟同步机控制策略中,优化惯量响应过程中的功率调度。负阻抗等效电路模型结合SVM机器学习算法,能有效提升iSolarCloud平台的电池健康管理和预测性维护能力,在保障电网频率支撑效果的同时延长电池寿命,增强储能系统安全边界管控水平。