← 返回
光伏发电技术 ★ 5.0

基于先验知识的大规模超高清光伏板分割数据集增强框架

A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge

作者 Ruiqing Yang · Guojin He · Ranyu Yin · Guizhou Wang · Xueli Peng · Zhaoming Zhang · Tengfei Long · Yan Peng · Jianping Wang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 390 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Proposed a dataset augmentation framework for fine-grained extraction of PV panels.
语言:

中文摘要

摘要 当前大多数提升模型精度的研究主要集中在模型本身的优化上,往往忽视了数据集质量的关键作用,尤其是在遥感大数据背景下。许多关于光伏发电(PV)的大规模提取研究通常仅关注光伏电站边界的粗略勾画,这限制了更深入的下游分析潜力。本文提出了一种针对光伏电站内部光伏板进行细粒度提取的框架,而非仅仅捕捉电站的外部轮廓。通过聚焦于单个光伏板级别的分割,该方法为下游应用(如发电量估算和空间布局优化)提供了更为精确的评估基础。该框架融合了先验知识,以应对地表覆盖、成像条件以及背景干扰所带来的挑战。一种创新的标签校正模型将像素级标注工作量减少了75%,从而生成了更加精细的数据集。实验结果表明,模型精度显著提升——从78%提高至92%。这一改进不仅归功于模型自身的优化,更得益于数据集的质量增强。该数据集增强方法为光伏制图提供了显著优势,提升了能源相关分析的精确度,并促进了太阳能管理的高效化。

English Abstract

Abstract Most current efforts to improve model accuracy focus primarily on refining the model itself, often overlooking the critical role of dataset quality—particularly in the context of remote sensing big data. Many large-scale extraction studies of photovoltaics (PV) tend to focus on coarse delineation of PV plant boundaries, which limits the potential for more detailed downstream analysis. This paper presents a framework that targets the fine-grained extraction of PV panels within PV power plants, rather than merely capturing the external contours of the plants. By focusing on individual panel-level segmentation, this approach enables more accurate assessments for downstream applications, such as energy yield estimation and spatial optimization. The framework integrates prior knowledge to address challenges posed by land cover, imaging conditions, and background interference. An innovative label correction model reduces pixel-level labeling effort by 75 %, resulting in a more refined dataset. Experimental results show a significant accuracy improvement—from 78 % to 92 %—which is attributed not only to the model refinement but also to the enriched dataset. This dataset augmentation offers substantial advantages for PV mapping, enhancing the precision of energy-related analyses and facilitating more effective solar energy management.
S

SunView 深度解读

该超高分辨率光伏板分割框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。通过面板级精细识别,可显著提升SG系列逆拟器的MPPT优化策略精度,实现组串级故障诊断与发电量评估。数据集质量提升(78%→92%)为预测性维护算法提供可靠训练基础,结合先验知识的标注效率提升75%可加速电站数字孪生建模。该技术可与PowerTitan储能系统协同,通过精准光伏出力预测优化充放电策略,提升源网荷储协调控制能力,支撑阳光电源全场景智慧能源管理解决方案。