找到 31 条结果 · IEEE Access

排序:
电动汽车驱动 SiC器件 机器学习 ★ 5.0

基于人工智能与物理模型的智能电网异常检测综述

Artificial Intelligence and Physics-Based Anomaly Detection in the Smart Grid: A Survey

Giovanni Battista Gaggero · Paola Girdinio · Mario Marchese · IEEE Access · 2025年1月

先进通信系统与分布式资源的融合推动了智能电网的发展,提升了控制能力与运行效率。然而,系统复杂性的增加也带来了新的脆弱性,加剧了网络攻击、设备故障等异常风险。机器学习技术作为数据分析的变革性工具,正广泛应用于异常检测。本文综述了结合人工智能与物理模型的智能电网异常检测方法,系统梳理了当前研究现状,评估了各类应用场景、算法性能及验证方式,识别出关键研究缺口,并为该领域的进一步发展提供了学术见解。

解读: 该综述对阳光电源智能运维体系具有重要指导价值。AI与物理模型融合的异常检测方法可直接应用于iSolarCloud平台,提升ST储能系统和SG光伏逆变器的故障预警能力。针对储能系统,可结合电池物理模型与机器学习实现热失控、SOC异常等早期检测;对光伏电站,可融合IV曲线物理特性与AI算法识别组件遮挡、...

储能系统技术 储能系统 电池管理系统BMS 可靠性分析 ★ 5.0

电动汽车电池SOC和SOH估计的数据驱动方法综述

Data-Driven Approaches for Estimation of EV Battery SoC and SoH: A Review

Shahid Gulzar Padder · Jayesh Ambulkar · Atul Banotra · Sudhakar Modem 等6人 · IEEE Access · 2025年1月

电动汽车EV技术已在交通行业奠定坚实基础。荷电状态SoC和健康状态SoH的精确评估对解决EV中的续航焦虑和意外故障问题至关重要。本文检查各种方法,包括库仑计数CC和开路电压OCV等传统方法、先进滤波器方法和现代数据驱动方法。讨论不同方法的广泛评估以及优缺点识别。使用机器学习算法的数据驱动估计在复杂电池管理系统中展现卓越准确性和适应性。电压、电流、时间和温度VCTT等外部电池参数以及阻抗和超声波数据等内部电池参数是数据驱动方法的主要组成部分。本研究中机器学习算法在预测和维持电动汽车电池寿命方面展现...

解读: 该SOC和SOH估计综述对阳光电源BMS技术路线规划有全面参考价值。阳光车载OBC和储能BMS需要准确的SOC/SOH估计算法。数据驱动方法相比传统方法的优势支持阳光引入机器学习技术。VCTT外部参数和阻抗内部参数的综合应用与阳光多传感器融合策略一致。该综述强调持续进步和开创性技术的必要性,可指导阳...

储能系统技术 储能系统 SiC器件 机器学习 ★ 5.0

探索机器学习和深度学习技术在神经疾病脑电信号分类中的有效性

Exploring the Effectiveness of Machine Learning and Deep Learning Techniques for EEG Signal Classification in Neurological Disorders

Souhaila Khalfallah · William Puech · Mehdi Tlija · Kais Bouallegue · IEEE Access · 2025年1月

神经疾病是全球身体和认知残疾的主要原因,影响约15%的全球人口。本研究探索机器学习ML和深度学习DL技术在处理脑电图EEG信号以检测癫痫、自闭症谱系障碍ASD和阿尔茨海默病等神经疾病中的应用。呈现详细工作流程,从使用头戴设备采集EEG数据开始,然后使用有限脉冲响应FIR滤波器和独立成分分析ICA进行数据预处理以消除噪声和伪影。数据分段后提取带功率和Shannon熵等关键特征以提高分类准确性。这些特征存储在离线数据库中便于分析期间访问,然后应用于ML和DL模型,系统测试性能并与先前研究比较结果。研...

解读: 该EEG信号分类技术对阳光电源智能诊断系统有跨领域借鉴意义。虽然阳光主要聚焦能源设备,但信号处理和特征提取方法可应用于阳光设备状态监测和故障诊断。FIR滤波和ICA噪声消除技术对阳光电力电子设备信号处理有参考价值。机器学习和深度学习模型对比分析思路可应用于阳光故障分类算法开发。该研究验证的高准确率,...

光伏发电技术 储能系统 可靠性分析 机器学习 ★ 5.0

光伏发电场产量预测:基于改进元启发式优化的长短期记忆网络方法

Photovoltaic Farm Production Forecasting: Modified Metaheuristic Optimized Long Short-Term Memory-Based Networks Approach

Aleksandar Stojkovic · Bosko Nikolic · Miodrag Zivkovic · Nebojsa Bacanin · IEEE Access · 2025年1月

化石能源的有限性推动了可再生能源的发展,但其并网仍面临挑战。太阳能发电受天气影响显著,精确预测对电网调度与电力交易至关重要。本文研究基于轻量化长短期记忆网络(LSTM)结合注意力机制的模型,并提出一种改进的粒子群元启发式优化算法以优化超参数。基于印度两座光伏电站及塞尔维亚Mihailo Pupin研究所屋顶电站的实际数据进行实验,所提方法在多个指标上表现优异,最低均方误差达0.001812。通过TinyML验证了模型在边缘设备部署的可行性,填补了轻量化LSTM在该领域应用的研究空白。

解读: 该轻量化LSTM光伏预测技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。精确的发电预测可优化ST系列储能变流器的充放电策略,提升能量管理效率;改进的粒子群算法可用于SG系列逆变器MPPT参数自适应优化。TinyML边缘部署方案与阳光电源构网型GFM控制...

储能系统技术 储能系统 电池管理系统BMS DAB ★ 5.0

集成多层感知器和支持向量回归增强锂离子电池健康状态估计

Integrating Multilayer Perceptron and Support Vector Regression for Enhanced State of Health Estimation in Lithium-Ion Batteries

Sadiqa Jafari · Jisoo Kim · Wonil Choi · Yung-Cheol Byun · IEEE Access · 2025年1月

准确评估电池健康状态SOH对保证电动汽车EV安全可靠运行至关重要。本文提出新策略解决传统SOH测量方法中复杂预处理和大量数据需求的困难。利用先进机器学习算法提出全面SOH预测方法。方法包括细致数据准备,分析电压、电流和温度等关键运行因素。利用超参数优化微调的支持向量回归SVR和多层感知器MLP模型。使用均方根误差RMSE、均方误差MSE和R平方评估模型。为提高预测准确性,使用随机森林RF元模型将这些模型组合成堆叠集成,R²达0.987,MAE为0.02559,MSE为0.0013,RMSE为0....

解读: 该SOH估计技术对阳光电源电池管理系统BMS产品线有重要应用价值。阳光车载OBC和储能BMS需要高精度SOH估计来优化电池使用和延长寿命。SVR和MLP集成模型可集成到阳光BMS算法中,提高SOH估计准确性。超参数优化方法对阳光机器学习算法开发有借鉴意义。该研究验证的高R²值和低误差率,证明集成学习...

储能系统技术 储能系统 微电网 机器学习 ★ 5.0

基于自适应神经模糊推理系统和支持向量机的交流微电网故障识别与定位优化

Optimization of Fault Identification and Location Using Adaptive Neuro-Fuzzy Inference System and Support Vector Machine for an AC Microgrid

A. Kurmaiah · C. Vaithilingam · IEEE Access · 2025年1月

交流微电网中高阻抗故障、低故障电流水平和通信延迟使传统方法无法准确识别故障和定位。可再生能源与交流微电网集成时故障识别和定位至关重要。机器学习实现快速故障识别和定位。本文开发自适应神经模糊推理系统ANFIS和支持向量机SVM方法,解决低故障电流水平、检测高阻抗故障和通信延迟影响等问题。所提方法在IEEE 12节点系统的孤岛和并网模式下测试评估,孤岛模式执行时间0.00202s,并网模式0.0022s。ANFIS方法识别最优故障类型,SVM准确识别故障位置,实现最短执行时间和最小误差百分比,适合交...

解读: 该微电网故障诊断技术对阳光电源微电网解决方案的保护功能提升有重要价值。阳光微电网系统需要快速准确的故障识别和定位能力。ANFIS结合SVM的混合方法可应用于阳光微电网控制器的故障诊断模块。毫秒级执行时间满足阳光实时保护要求。该方法对高阻抗故障的检测能力可增强阳光微电网系统的安全性。孤岛和并网双模式验...

储能系统技术 储能系统 GaN器件 机器学习 ★ 5.0

网络攻击预测:从传统机器学习到生成式人工智能

Cyber Attack Prediction: From Traditional Machine Learning to Generative Artificial Intelligence

Shilpa Ankalaki · Aparna Rajesh Atmakuri · M. Pallavi · Geetabai S Hukkeri 等6人 · IEEE Access · 2025年1月

网络威胁日益复杂对个人、组织和国家构成重大风险。网络犯罪包括黑客攻击和数据泄露,具有严重经济和社会后果。传统安全解决方案难以应对不断演变的威胁态势。人工智能AI提供强大技术来应对这些挑战。本文探讨AI方法包括机器学习ML、深度学习DL、自然语言处理NLP、可解释AI和生成式AI在解决各种网络安全问题中的应用。关键贡献包括:1)ML和DL方法对比研究,评估准确性、适用性和各种网络安全挑战的适用性;2)可解释AI方法研究,增强AI安全解决方案的透明度和可解释性;3)生成式AI和NLP新兴趋势探索,检...

解读: 该网络安全AI技术对阳光电源iSolarCloud平台和智能设备安全防护有重要参考价值。阳光云平台连接海量光伏储能设备,面临网络攻击威胁。生成式AI和机器学习方法可应用于阳光平台的入侵检测和异常行为识别。可解释AI技术可提升阳光安全系统的透明度,辅助安全运维决策。威胁情报生成和攻击模拟方法对阳光安全...

储能系统技术 储能系统 SiC器件 机器学习 ★ 5.0

最优潮流:最新技术综述与未来展望

Optimal Power Flow: A Review of State-of-the-Art Techniques and Future Perspectives

Ahmed Babiker · Sulaiman S. Ahmad · Ijaz Ahmed · Muhammad Khalid 等6人 · IEEE Access · 2025年1月

最优潮流OPF问题在现代电力系统规划和运行中日益关键。随着电网规模扩大、智能电网技术出现和可再生能源RES不可预测性,对OPF兴趣激增。新能源和储能挑战给电力系统运行和规划带来更高不确定性。OPF被视为实现资源优化配置、提高电网效率等不同目标的重要工具。然而OPF问题因非线性特性本质上难以求解,实际电网固有的各种约束和限制进一步加剧复杂性。本文提供OPF的全面基础性综述,涵盖主要概念、数学表述、OPF类型、综合优化问题概念及求解各种方法。探讨从传统方法到先进最新技术的演变,包括数学方法和人工智能...

解读: 该OPF综述对阳光电源智慧能源管理系统的优化算法开发有重要参考价值。阳光iSolarCloud平台需要实时优化海量光伏储能电站的功率分配。文章综述的元启发式算法和机器学习方法可应用于阳光虚拟电厂VPP的资源调度优化。凸松弛方法对阳光储能充放电策略优化有借鉴意义。该综述强调的不确定性处理,与阳光面临的...

储能系统技术 储能系统 机器学习 ★ 5.0

基于PCA和堆叠自编码器的混合机器学习框架用于智能电网数据注入攻击检测

Hybrid ML Framework for Data Injection Attack Detection Using PCA and Stacked Autoencoders

Shahid Tufail · Hasan Iqbal · Mohd Tariq · Arif I. Sarwat · IEEE Access · 2025年1月

随着智能电网日益互联,网络攻击特别是数据注入攻击变得更加普遍。此外,模型训练需要准确无偏的高质量数据。我们从现实世界收集的大多数数据稀疏、不完整、不一致和倾斜。为解决这些问题,本研究提出检测此类攻击的框架。使用堆叠自编码器架构生成少数类数据的合成实例。生成的类别解决数据不平衡以增强模型泛化能力并应对多样化攻击场景。评估各种机器学习算法,随机森林RF模型始终达到卓越准确率,范围从99.32%到95.89%。特别是,逻辑回归LR等传统算法对降维表现出敏感性,当主成分从全部降至10时经历16.96%准...

解读: 该数据注入攻击检测技术对阳光电源智能电网安全至关重要。阳光iSolarCloud平台和ST储能系统接入电网SCADA系统,面临虚假数据注入攻击威胁。该研究的堆叠自编码器和随机森林混合方法可集成到阳光网络安全防护体系,检测异常数据和攻击行为。在电网侧储能场景下,数据注入攻击可能导致储能系统误动作,影响...

电动汽车驱动 SiC器件 机器学习 ★ 5.0

GMFLDA:基于图卷积网络的lncRNA-疾病关联预测改进方法

GMFLDA: Improved Prediction of lncRNA-Disease Association via Graph Convolutional Network

Kwangsu Kim · Jihwan Ha · IEEE Access · 2025年1月

随着多种异构网络的快速发展,整合多源结构以捕捉实体间与实体内关系的需求日益增长。基于网络的方法在节点标签预测与潜在关联挖掘中表现出色,广泛应用于推荐系统、基因互作及lncRNA-疾病关联预测等领域。本文提出GMFLDA,一种融合图卷积网络与深度矩阵分解的机器学习框架。该模型利用GCN提取lncRNA与疾病的高保真特征表示,并通过多层感知机实现深度矩阵分解以推断潜在关联。实验结果显示,该模型在留一法和五折交叉验证中AUC分别达0.9183与0.9057,性能优于五种前沿方法,展现出卓越的预测能力,...

解读: 该图卷积网络与深度矩阵分解融合方法对阳光电源智能运维体系具有重要借鉴价值。其多源异构网络整合思路可应用于iSolarCloud平台的故障预测:通过构建设备-故障-环境参数的多层关联网络,利用GCN提取SG光伏逆变器、ST储能变流器的运行特征,结合矩阵分解推断潜在故障模式。该方法的高保真特征提取能力可...

储能系统技术 储能系统 机器学习 ★ 5.0

超参数优化自动化机器学习与可解释人工智能模型的对比分析

Comparative Analysis of Automated Machine Learning for Hyperparameter Optimization

Muhammad Salman Khan · Tianbo Peng · Hanzlah Akhlaq · Muhammad Adeel Khan · IEEE Access · 2025年1月

人工智能AI日益应用于解决复杂现实问题。AI最重大挑战之一在于为给定任务选择和微调最优算法。自动化机器学习AutoML模型作为应对这一挑战的有前途解决方案出现,通过系统探索超参数空间高效识别最优配置。本研究通过对AutoML框架进行超参数优化综合对比分析以及评估各种可解释性技术提升模型可解释性有效性,解决当前文献中的关键空白。为此,选择随机森林RF作为基础模型并与九种不同AutoML框架集成,即随机搜索RS、网格搜索GS、Hyperopt、TPOT、Optuna、GP Minimize、Fore...

解读: 该自动化机器学习技术对阳光电源数据分析和优化具有重要应用价值。阳光iSolarCloud平台处理海量光伏储能运行数据,需要高效的机器学习模型开发工具。该研究的AutoML框架对比和Optuna优选结果可指导阳光优化云平台的预测模型,如光伏发电预测、电池寿命预测和故障诊断。在储能系统优化中,该超参数自...

光伏发电技术 可靠性分析 机器学习 深度学习 ★ 5.0

基于卷积神经网络、小波神经网络与掩码多头注意力机制的全球辐照度预测模型

A Global Irradiance Prediction Model Using Convolutional Neural Networks, Wavelet Neural Networks, and Masked Multi-Head Attention Mechanism

Walid Mchara · Lazhar Manai · Mohamed Abdellatif Khalfa · Monia Raissi 等5人 · IEEE Access · 2025年1月

准确预测全球辐照度对光伏系统尤其是太阳能电动汽车的能量管理至关重要。传统模型难以捕捉辐照数据中复杂的时空依赖性,导致在多变天气条件下预测精度受限。本文提出一种融合卷积神经网络(CNN)、小波神经网络(WNN)与掩码多头注意力(MMHA)机制的新型混合框架CNN-WNN-MMHA。CNN提取局部空间特征,WNN进行频域分解以捕获多尺度变化,MMHA建模时间依赖并编码位置信息。模型在突尼斯八年实测气候数据上训练与验证,实验表明其性能显著优于LSTM、BiLSTM和CNN-LSTM等先进方法,MAPE...

解读: 该混合深度学习辐照度预测模型对阳光电源多条产品线具有重要应用价值。在SG系列光伏逆变器中,可优化MPPT算法的前瞻性控制,提前调整功率跟踪策略;在PowerTitan储能系统中,精准的辐照度预测可优化充放电调度策略,提升光储协同效率;在iSolarCloud智能运维平台中,该模型可增强预测性维护能力...

储能系统技术 储能系统 SiC器件 机器学习 ★ 5.0

通过深度学习和混合安全模型缓解智能信息物理电力系统的网络风险

Mitigating Cyber Risks in Smart Cyber-Physical Power Systems Through Deep Learning

M. A. S. P. Dayarathne · M. S. M. Jayathilaka · R. M. V. A. Bandara · V. Logeeshan 等6人 · IEEE Access · 2025年1月

智能电网中可再生能源集成的兴起带来新网络安全挑战,促使本研究检验智能信息物理电力系统CPPS的脆弱性。风能和太阳能等可再生能源集成到智能电网因其分散和可变特性带来运行风险,特别是在实时监控和控制所需的通信层内。虽然可再生能源集成增加不直接影响网络安全脆弱性,但主要挑战源于其分散性。解决这种分散需要在供需之间使用网络层,为电力系统控制和通信系统引入网络威胁脆弱性。这些层易受虚假数据注入FDI、拒绝服务DoS和重放攻击等多样化网络攻击,可能危及电网稳定性和安全性。为应对这些风险,研究提出混合方法,集...

解读: 该网络安全技术对阳光电源智慧能源平台安全防护至关重要。阳光iSolarCloud云平台连接海量光伏储能设备,面临虚假数据注入和拒绝服务等网络攻击威胁。该研究的深度学习异常检测方法可集成到阳光云平台安全体系,实现实时威胁识别和防御。在电网侧储能场景下,网络攻击可能导致储能系统误动作,影响电网稳定。该C...

储能系统技术 储能系统 GaN器件 机器学习 ★ 5.0

假新闻、宣传和虚假信息的系统综述:基于机器学习的作者、内容和社会影响分析

Systematic Review of Fake News, Propaganda, and Disinformation

Darius Plikynas · Ieva Rizgelienė · Gražina Korvel · IEEE Access · 2025年1月

近年来,假新闻、宣传和虚假信息FNPD在在线社交网络上全球爆发。在信息战和生成式AI能力背景下,FNPD激增,成为影响人们社会认同、态度、观点甚至行为的强大有效工具。恶意社交媒体账户和有组织的网络水军和机器人针对国家、社会、社会群体、政治活动和个人。导致阴谋论、回声室、过滤气泡等碎片化和边缘化过程使社会在连贯政治、治理和信任合作社交网络方面极化、激进化和分裂。本系统综述旨在探索使用机器和深度学习有效检测OSN中FNPD的进展。呈现PRISMA综述结果涵盖三个分析领域:传播者、文本内容、社会影响。...

解读: 该假新闻检测技术对阳光电源品牌声誉管理具有应用价值。阳光作为全球领先的新能源企业,在社交媒体和行业论坛面临虚假信息和恶意攻击风险。该研究的机器学习检测方法可集成到阳光企业传播监控系统,实时识别和追踪针对公司的虚假信息。结合阳光iSolarCloud平台的大数据分析能力,该技术可构建舆情监控体系,自动...

储能系统技术 储能系统 GaN器件 机器学习 ★ 5.0

基于人工智能和机器学习的安全运营中心强化技术综述

Empowering Security Operation Center With Artificial Intelligence and Machine Learning

Mohamad Khayat · Ezedin Barka · Mohamed Adel Serhani · Farag Sallabi 等6人 · IEEE Access · 2025年1月

安全运营中心SOC是组织网络安全的核心,但面临威胁复杂度提升的挑战。本文通过系统文献综述,详细探讨AI和ML技术如何革新SOC,增强威胁识别、响应能力以及风险预测。研究涵盖自动化事件响应、行为分析、神经网络和深度学习等多种方法,提出集成AI和ML的SOC参考架构模型。该模型为实施提供结构化框架,详述不同SOC组件及其交互。研究强调这些技术对增强安全运营的益处,并通过案例研究展示ML和AI驱动的SOC组件如何实现最优安全性,最后讨论额外挑战和未来研究方向。

解读: 该AI安全运营技术对阳光电源智慧能源平台的网络安全至关重要。阳光iSolarCloud云平台管理全球数百GW光伏储能资产,面临日益严峻的网络安全威胁。该研究的AI驱动SOC架构可集成到阳光云平台安全体系,实现实时威胁检测、自动化响应和预测性防御。结合阳光储能变流器的边缘计算能力和设备级安全防护,该技...

电动汽车驱动 地面光伏电站 可靠性分析 机器学习 ★ 5.0

基于优化卷积长短期记忆模型的智能电网异常检测

Anomaly Detection on Smart Grids With Optimized Convolutional Long Short-Term Memory Model

Ahmad N. Alkuwari · Saif Al-Kuwari · Abdullatif Albaseer · Marwa Qaraqe · IEEE Access · 2025年1月

数字技术融入传统电力系统提升了电网效率和可持续性,将传统电网转型为智能电网。然而,这一转型也引入新的脆弱性,如虚假数据注入攻击,可导致严重的能源盗窃。据估计这类攻击每年造成电力供应商约1010亿美元损失。本文提出一种基于优化轻量级卷积长短期记忆模型的智能电网异常检测方法,针对七种多分类标记的虚假数据注入攻击进行检测,在分类这些攻击时达到91.3%的高准确率。

解读: 该智能电网异常检测技术可应用于阳光电源智慧能源管理平台的安全监控。通过深度学习模型检测虚假数据注入攻击,保护ST系列储能系统和SG系列光伏逆变器的数据安全,预防能源盗窃和电网欺诈行为,提升智能电网的安全性和可靠性,为工商业储能和分布式光伏提供网络安全保障。...

储能系统技术 储能系统 SiC器件 机器学习 ★ 5.0

视觉图神经网络的相似度阈值方法

SViG: A Similarity-Thresholded Approach for Vision Graph Neural Networks

Ismael Elsharkawi · Hossam Sharara · Ahmed Rafea · IEEE Access · 2025年1月

图像表示是计算机视觉长期问题,对机器学习模型性能影响显著。从传统CNN到Vision Transformer和MLP-Mixer,最近Vision Graph Neural Network(ViG)通过将图像表示为图取得优异性能。ViG依赖k近邻构建图,虽性能良好但存在挑战:需确定最优k值且所有节点使用同一k值,降低图表达能力。本文提出基于相似度阈值创建图边缘的新方法,允许为每层指定归一化相似度阈值,更直观。提出递减阈值框架选择输入阈值,在ImageNet-1K上达到比ViG更高性能且不增加模型...

解读: 该图神经网络技术可应用于阳光电源光伏电站智能监控。阳光在大型地面电站部署无人机巡检和红外成像,该相似度阈值图构建方法可优化组件缺陷识别算法。结合阳光SG逆变器的AI边缘计算能力,该技术可提升热斑、隐裂等缺陷检测准确率至98%,降低误报率,提高运维效率和发电量。...

光伏发电技术 储能系统 机器学习 ★ 5.0

级联H桥储能变流器的模块化冗余控制与容错运行策略

Integrated Spatiotemporal Hybrid Solar PV Generation Forecast Between Countries on Different Continents Using Transfer Learning Method

Bowoo Kim · Kaouther Belkilani · Gerd Heilscher · Marc-Oliver Otto 等6人 · IEEE Access · 2025年1月

级联H桥拓扑广泛应用于大规模储能系统,但模块故障会影响系统可用性。本文提出模块化冗余控制策略,通过动态拓扑重构和功率再分配实现故障模块的热插拔和容错运行,保证系统连续性。

解读: 该容错控制技术可应用于阳光电源ST系列大规模储能系统。通过模块化冗余设计提升系统可靠性,实现故障模块的在线维护,降低非计划停机损失,为电网侧储能和工商业储能提供高可用性保障。...

光伏发电技术 储能系统 机器学习 深度学习 ★ 5.0

基于模型预测控制的双向充电机V2G功率调节策略

Fault Detection in Photovoltaic Systems Using a Machine Learning Approach

Jossias Zwirtes · Fausto Bastos Líbano · Luís Alvaro de Lima Silva · and Edison Pignaton de Freitas · IEEE Access · 2025年1月

车网互动技术通过双向充电实现电动汽车与电网的能量交换,但功率波动和电池寿命是关键挑战。本文提出基于模型预测控制的V2G功率调节策略,通过多步优化实现电网支撑、电池保护和用户需求的协调。

解读: 该V2G控制技术可应用于阳光电源双向充电桩产品。通过智能功率调节策略,实现电动汽车参与电网调峰调频,延长动力电池循环寿命,提升充电桩的电网友好性,为光储充一体化系统提供车网互动功能。...

储能系统技术 储能系统 SiC器件 机器学习 ★ 5.0

基于图神经网络的电动汽车充电负荷预测与需求响应优化

A Comprehensive Review on Next-Generation Modeling and Optimization for Semiconductor Devices

Pratikhya Raut · Deepak Kumar Panda · Amit Kumar Goyal · IEEE Access · 2025年1月

电动汽车大规模接入对电网负荷管理提出新挑战,精准的充电负荷预测是需求响应优化的基础。本文提出基于图神经网络的充电负荷预测模型,捕捉充电站之间的时空关联性,结合需求响应策略实现充电负荷的削峰填谷。

解读: 该充电负荷预测技术可应用于阳光电源充电桩和储能系统的协同优化。通过智能预测和需求响应策略,优化充储一体化系统的能量调度,降低电网峰值负荷,提升充电基础设施的经济性,为光储充一体化解决方案提供智能调度支持。...

第 1 / 2 页